पृथ्वी के शिखर पर सूक्ष्मजीव – डॉ. डी. बालसुब्रमण्यन

डॉ. एन. बी. ड्रेगोन और उनके साथियों द्वारा आर्कटिक, अंटार्कटिक और एल्पाइन नामक पत्रिका में एक अध्ययन प्रकाशित किया गया है : समुद्रतल से 7900 मीटर की ऊंचाई पर सागरमाथा (माउंट एवरेस्ट) के साउथ कोल पर फ्रोज़न सूक्ष्मजीव संसार का विश्लेषण। अध्ययन में शोधकर्ताओं ने माउंट एवरेस्ट के दुर्गम ढलानों पर मनुष्यों के सूक्ष्मजीव संसार का विश्लेषण किया है।

उन्होंने माउंट एवरेस्ट के दक्षिणी कोल में (समुद्र तल से 7900 मीटर ऊंचाई पर) पर्वतारोहियों द्वारा छोड़े गए सूक्ष्मजीवों को वहां की तलछट से निकाला।

साउथ कोल वह चोटी है जो माउंट एवरेस्ट को ल्होत्से से अलग करती है – ल्होत्से पृथ्वी का चौथा सबसे ऊंचा पर्वत है। इन दोनों चोटियों के बीच की दूरी केवल तीन किलोमीटर है। समुद्रतल से 7900 मीटर की ऊंचाई पर, दक्षिण कोल जीवन के लिए दूभर स्थान है – जुलाई 2022 में लू (हीट वेव) के दौरान यहां का सबसे अधिक तापमान ऋण 1.4 डिग्री सेल्सियस दर्ज किया गया था।

इंसानों को हटा दें तो यहां जीवन का नामोंनिशान नहीं दिखाई देता। जीवन का आखिरी निशान काफी नीचे, समुद्रतल से 6700 मीटर की ऊंचाई, पर दिखता है – जिसमें काई की कुछ प्रजातियां है और एक कूदने वाली मकड़ी है जो हवा में उड़कर आए फ्रोज़न कीड़ों को खाती है।

अधिक ऊंचाई पर, ऑक्सीजन कम होती है (समुद्र तल पर 20.9 प्रतिशत के मुकाबले 7.8 प्रतिशत), तेज़ हवाएं चलती हैं, तापमान आम तौर पर ऋण 15 डिग्री सेल्सियस रहता है और पराबैंगनी विकिरण का उच्च स्तर होता है। ये सभी चीज़ें जीवन को और मुश्किल बना देती हैं। चूंकि सभी पारिस्थितिक तंत्रों में सभी प्रजातियों-जीवों के बीच परस्पर निर्भरता है, यहां सूक्ष्मजीव भी जीवित नहीं रह सकते।

हवा और इंसान

लेकिन यहां सूक्ष्म जीव आते तो रहते हैं – पशु-पक्षियों या हवाओं के साथ। समुद्र तल से लगभग 6000 मीटर की ऊंचाई पर 20 माइक्रोमीटर से कम साइज़ के धूल के कण हवाओं के साथ उड़कर आ जाते हैं। इस धूल का कुछ हिस्सा मूलत: सहारा रेगिस्तान से आता है। इससे समझ में आता है कि इतनी ऊंचाई पर भी सूक्ष्मजीव संसार में इतनी विविधता कैसे है। 7000 मीटर की ऊंचाई पर मुख्यत: हवाएं और मनुष्य ही इनके वाहक का कार्य करते हैं।

राइबोसोमल आरएनए अनुक्रमण की परिष्कृत तकनीकों का उपयोग करके सूक्ष्मजीव विशेषज्ञों ने दक्षिण कोल पर पाए जाने वाले बैक्टीरिया और अन्य सूक्ष्मजीवों की पहचान कर ली है। यहां से एकत्रित किए गए सूक्ष्मजीवों में सर्वदेशीय मनुष्यों की छाप देखी गई है। इसके अलावा, यहां मॉडेस्टोबैक्टर अल्टिट्यूडिनिस और नागानिशिया फफूंद भी पाए गए हैं। इन्हें पराबैंगनी-प्रतिरोधी संस्करणों के रूप में जाना जाता है।

माउंट एवरेस्ट को ‘सागरमाथा’ नाम किसने दिया? नेपाल के विख्यात इतिहासकार स्वर्गीय बाबूराम आचार्य ने 1960 के दशक में इसे नेपाली नाम सागरमाथा दिया था।

कंचनजंगा चोटी

1847 में, भारत के ब्रिटिश महासर्वेक्षक एंड्रयू वॉग ने हिमालय के पूर्वी छोर में एक चोटी की खोज की थी जो कंचनजंगा से भी ऊंची थी – कंचनजंगा को उस समय दुनिया की सबसे ऊंची चोटी माना जाता था। उनके पूर्वाधिकारी, सर जॉर्ज एवरेस्ट, ऊंची पर्वत-चोटियों में रुचि रखते थे और उन्होंने वॉग को नियुक्त किया था। सच्ची औपनिवेशिक भावना दर्शाते हुए वॉग ने इस चोटी को माउंट एवरेस्ट का नाम दिया था।

भारतीय गणितज्ञ और सर्वेक्षक, राधानाथ सिकदर, एक काबिल गणितज्ञ थे। वे यह दर्शाने वाले पहले व्यक्ति थे कि माउंट एवरेस्ट (तब यह चोटी-XV के नाम से जानी जाती थी) दुनिया की सबसे ऊंची चोटी है। जॉर्ज एवरेस्ट ने सिकदर को 1831 में सर्वे ऑफ इंडिया में ‘गणक’ के पद पर नियुक्त किया था।

सिकदर ने सन 1852 में एक विशेष उपकरण की मदद से ‘चोटी XV’ की ऊंचाई 8839 मीटर दर्ज की थी। हालांकि, इसकी ऊंचाई की आधिकारिक घोषणा मार्च, 1856 में की गई थी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://th-i.thgim.com/public/incoming/a1fiy0/article66767120.ece/alternates/LANDSCAPE_1200/2023-04-12T110843Z_557709981_RC2YC0AQ4S59_RTRMADP_3_NEPAL-EVEREST-AVALANCHE.JPG

शिक्षण में चैटजीपीटी का उपयोग

पिछले वर्ष नवंबर के अंत में एआई आधारित एक ऐसा आविष्कार बाज़ार में आया जिसने शोध और शिक्षण समुदाय से जुड़े लोगों को चिंता में डाल दिया। ओपनएआई द्वारा जारी किया गया चैटजीपीटी एक प्रकार का विशाल भाषा मॉडल (एलएलएम) एल्गोरिदम है जिसे भाषा के विपुल डैटा से प्रशिक्षित किया गया है।

कई शिक्षकों व प्रोफेसरों का ऐसा मानना था कि छात्र अपने निबंध और शोध सार लेखन के लिए चैटजीपीटी का उपयोग करके चीटिंग कर सकते हैं। छात्रों का कार्य मौलिक हो और उसमें शैक्षणिक बेईमानी न हो, इस उद्देश्य से कुछ विश्वविद्यालयों ने तो चैटजीपीटी आधारित टेक्स्ट को साहित्यिक चोरी की श्रेणी में रखा जबकि कई अन्य ने इसके उपयोग पर पूरी तरह प्रतिबंध ही लगा दिया। हालांकि युनिवर्सिटी ऑफ रीडिंग (यू.के.) जैसे कई विश्वविद्यालय ऐसे भी हैं जिन्होंने इस सम्बंध में कोई स्पष्ट दिशा-निर्देश जारी नहीं किए हैं।

इस युनिवर्सिटी में पर्यावरण विज्ञान के प्रोफेसर हांग यैंग चैटजीपीटी को पूरी तरह से प्रतिबंधित करने के पक्ष में नहीं हैं। यैंग के अनुसार इस तकनीक द्वारा लिखे गए काम का पता लगाना काफी मुश्किल है लेकिन छात्रों को अधुनातन टेक्नॉलॉजी से दूर रखना भी उचित नहीं है। पढ़ाई पूरी करने के बाद उन्हें ऐसी तकनीकों के साथ काम करना होगा। वे अभी इसका सही उपयोग करना नहीं सीखेंगे तो यकीनन पीछे रह जाएंगे। लिहाज़ा, इसे शिक्षण में एकीकृत करने का प्रयास तो किया ही जा सकता है। एक उदाहरण… 

वायु प्रदूषण के शिक्षक के रूप में यैंग ने अपने छात्रों से कॉलेज परिसर में वायु-गुणवत्ता डैटा एकत्रित करने के लिए छोटे समूहों में काम करने कहा। डैटा विश्लेषण और व्यक्तिगत निबंध लिखने के लिए उन्हें सांख्यिकीय तरीकों का उपयोग करना था। इस काम में कई छात्र कार्बन डाईऑक्साइड उत्सर्जन का आकलन करने के लिए उपयुक्त विधि खोजने में संघर्ष कर रहे थे। तब यैंग ने प्रोजेक्ट डिज़ाइन करने के लिए चैटजीपीटी का उपयोग करने का सुझाव दिया। इस मॉडल की मदद से उन्हें कार्बन डाईऑक्साइड निगरानी उपकरणों के लिए स्थान की पहचान करने से लेकर उपकरण स्थापित करने, डैटा एकत्र करने और उसका विश्लेषण करने तथा परिणामों को प्रस्तुत करने के बेहतरीन सुझाव मिले। 

इस प्रोजेक्ट में छात्र-वैज्ञानिकों ने विश्लेषण और निबंध लिखने का सारा काम किया लेकिन उन्होंने यह भी सीखा कि कैसे एलएलएम की मदद से वैज्ञानिक विचारों को तैयार किया जाता है और प्रयोगों की योजना बनाई जा सकती है। चैटजीपीटी की मदद से वे सांख्यिकीय परीक्षण करने तथा प्राकृतिक और मानव निर्मित परिसर में कार्बन डाईऑक्साइड के स्तरों का विश्लेषण करने में काफी आगे जा पाए।                   

इस अभ्यास के बाद से यैंग ने मूल्यांकन के तरीकों में भी परिवर्तन किया ताकि छात्र शैक्षिक सामग्री को बेहतर ढंग से समझें और चोरी करने से बच सकें। निबंध लिखने की बजाय यैंग ने प्रोजेक्ट के निष्कर्षों को साझा करने के लिए छात्रों को 10 मिनट की मौखिक प्रस्तुति देने को कहा। इससे न केवल साहित्यिक चोरी की संभावना में कमी आई बल्कि मूल्यांकन प्रक्रिया अधिक संवादनुमा और आकर्षक हो गई।  

हालांकि, चैटजीपीटी के कई फायदों के साथ नकारात्मक पहलू भी हैं। उदाहरण के तौर पर यैंग ने ग्रीनहाउस गैसों के व्याख्यान के दौरान चैटजीपीटी से जलवायु परिवर्तन से सम्बंधित किताबों और लेखकों की सूची मांगी। इसी सवाल में उन्होंने नस्ल और भाषा के पूर्वाग्रह को रोकने के लिए खोज में “जाति और भाषा का ख्याल किए बगैर” जैसे शब्दों को भी शामिल किया। लेकिन फिर भी चैटजीपीटी के जवाब में सभी किताबें अंग्रेज़ी में थीं और 10 में से 9 लेखक श्वेत और 10 में से 9 लेखक पुरुष थे।  

वास्तव में एलएलएम को प्रशिक्षित करने के लिए पुरानी किताबों और वेबसाइटों की जानकारी का उपयोग करने से हाशिए वाले समुदायों के प्रति पक्षपाती दृष्टिकोण नज़र आता है, जबकि वर्चस्वपूर्ण वर्ग की उपस्थिति बढ़ जाती है। मेटा कंपनी के गैलेक्टिका नामक एलएलएम को इसीलिए हटाया गया है क्योंकि यह नस्लवादी सामग्री उत्पन्न कर रहा था। गौरतलब है कि एलएलएम को प्रशिक्षित करने के लिए उपयोग किया जाने वाला अधिकांश डैटा अंग्रेज़ी में है, इसलिए वे उसी भाषा में बेहतर प्रदर्शन करते हैं। एलएलएम का व्यापक उपयोग विशेषाधिकार प्राप्त समूहों के अति-प्रतिनिधित्व को बढ़ा सकता है, और पहले से ही कम प्रतिनिधित्व वाले लोगों को और हाशिए पर धकेल सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.nature.com/lw1024/magazine-assets/d41586-023-01026-9/d41586-023-01026-9_25206324.jpg

बृहस्पति के चंद्रमा पर पहला मिशन

त 14 अप्रैल को युरोपीय अंतरिक्ष एजेंसी (ईएसए) द्वारा बृहस्पति के विशाल चंद्रमा का अध्ययन करने के लिए जुपिटर आइसी मून एक्स्प्लोरर (जूस) प्रक्षेपित किया गया। उम्मीद की जा रही है कि यह अंतरिक्ष यान गैलीलियो द्वारा 1610 में खोजे गए बृहस्पति के चार में से तीन बड़े चंद्रमाओं के नज़दीक से गुज़रते हुए अंत में ग्रह के सबसे विशाल चंद्रमा गैनीमेड की परिक्रमा करेगा। इस मिशन का उद्देश्य गैनीमेड की बर्फीली सतह के नीचे छिपे महासागर में जीवन के साक्ष्यों की खोज करना है। ऐसा पहली बार होगा जब कोई अंतरिक्ष यान हमारे अपने चंद्रमा के अलावा किसी अन्य प्राकृतिक उपग्रह की परिक्रमा करेगा।

यदि सब कुछ योजना अनुसार होता है तो 6 टन वज़नी अंतरिक्ष यान लगभग एक वर्ष के भीतर पृथ्वी और चंद्रमा के करीब से गुज़रेगा जिससे यान को बाहरी सौर मंडल की ओर बढ़ने में मदद मिलेगी। इसके लिए बहुत ही सटीक गुरुत्वाकर्षण-आधारित संचालन की आवश्यकता होगी। बाह्य सौर मंडल के अन्य मिशनों की तरह इस मिशन में भी जूस प्रक्षेपवक्र सीधा तो कदापि नहीं होगा। यह 2025 में वीनस के नज़दीक से गुज़रेगा और 2026 व 2029 में दो बार फिर से पृथ्वी के नज़दीक से गुज़रते हुए 2031 में बृहस्पति के करीब पहुंचेगा।

इस बिंदु पर यान के मुख्य इंजन को धीमा किया जाएगा ताकि वह बृहस्पति की परिक्रमा करने लगे। बृहस्पति की कक्षा में आने के बाद यह ग्रह के दूसरे सबसे बड़े चंद्रमा कैलिस्टो के काफी नज़दीक से 21 बार गुज़रेगा जबकि सबसे छोटे चंद्रमा युरोपा को बस दो बार पार करेगा।

2035 में जूस को गैनीमेड की कक्षा में भेजने के लिए इसके मुख्य इंजन को पुन: चालू किया जाएगा ताकि यह गैनीमीड की कक्षा में प्रवेश कर जाए। यह लगभग 9 महीने के लिए गैनीमेड के चारों ओर 500 किलोमीटर की ऊंचाई पर चक्कर लगाएगा। गैनीमीड की कक्षा में प्रवेश की प्रक्रिया भी काफी नाज़ुक होगी – गैनीमेड के चारों ओर धीमी गति से प्रवेश करना होगा और जूस की रफ्तार को गैनीमीड की कक्षीय गति से मेल खाना होगा। यदि इसमें थोड़ी भी चूक होती है तो बृहस्पति का गुरुत्वाकर्षण इसे गैनीमेड से और दूर ले जाएगा।

वैज्ञानिकों का मानना है कि बृहस्पति के कुछ चंद्रमाओं की बर्फीली सतह के नीचे तरल पानी उपस्थित है जो जीवन के विकास के लिए उचित वातावरण प्रदान कर सकता है। 1990 के दशक के मध्य में नासा के गैलीलियो प्रोब ने गैनीमेड और युरोपा पर महासागरों के साक्ष्य प्रदान किए थे। इसके बाद 2015 में हबल टेलिस्कोप की मदद से गैनीमेड पर ध्रुवीय ज्योति के संकेत भी मिले जो इस बात का प्रमाण है कि यहां चुंबकीय क्षेत्र मौजूद है।   

महासागरों की उपस्थिति के अधिक संकेत जूस द्वारा लेज़र-अल्टीमीटर द्वारा तैयार किए गए स्थलाकृति मानचित्रों से प्राप्त होंगे। अपनी साप्ताहिक परिक्रमा के दौरान गैनीमेड कुछ समय ग्रह के नज़दीक और कुछ समय दूर रहता है, इसके साथ ही अन्य चंद्रमाओं के गुरुत्वाकर्षण खिंचाव से उत्पन्न ज्वारीय बलों के कारण यह फैलता और सिकुड़ता है। एक बर्फीली सतह वाली दुनिया के लिए इस प्रकार की विकृतियां सतह को 10 मीटर तक ऊपर या नीचे ला सकती हैं।  

अपनी यात्रा के दौरान जूस 85 वर्ग मीटर के सौर पैनल का उपयोग करेगा जो ग्रह के चारों ओर संचालन के लिए आवश्यक है। इसके अलावा यह विभिन्न देशों द्वारा तैयार किए गए ढेर सारे उपकरण और एंटेना भी तैनात करेगा। बर्फीले चंद्रमाओं की सतहों की मैपिंग के साथ-साथ ये उपकरण उपग्रहों के वायुमंडल, बृहस्पति के मज़बूत चुंबकीय क्षेत्र और विकिरण बेल्ट आदि का भी अध्ययन करेंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Ganymede_-Perijove_34_Composite.png/1200px-Ganymede-_Perijove_34_Composite.png

ऑक्टोपस के फिंगरप्रिंट

पिग्मी ज़ेब्रा ऑक्टोपस प्रशांत महासागर के अमेरिकी तटीय क्षेत्र के मूल निवासी हैं। जैसा कि इनके नाम, पिग्मी ज़ेब्रा ऑक्टोपस, से झलकता है इनके शरीर पर ज़ेब्रा के समान धारियां होती हैं। अब, इन पर हुआ हालिया अध्ययन बताता है कि इनमें से प्रत्येक नन्हें सेफेलोपोड की ये धारियां अद्वितीय होती हैं, और संभवत: ये एक-दूसरे को पहचानने में मदद करती हैं।

कैलिफोर्निया विश्वविद्यालय के शोधकर्ताओं ने प्रयोगशाला में 25 नवजात पिग्मी ज़ेब्रा ऑक्टोपस (ऑक्टोपस चिरेचिए) की हर हफ्ते तस्वीरें लीं। फिर एडोब इलस्ट्रेटर की मदद से हरेक के शरीर की धारियों और धब्बों के पैटर्न देखे। प्लॉस वन में उन्होंने बताया है कि अंडे से निकलने के पांच दिन बाद ही उनमें धारियों के अद्वितीय पैटर्न दिखने लगते हैं और ये पैटर्न ताउम्र बने रहते हैं, भले ही उनकी त्वचा का रंग और बनावट बदल जाएं। हो सकता है कि ये ऑक्टोपस एक-दूसरे को इन धारियों से पहचानते हों।

मानव प्रतिभागी ऑक्टोपस के बीच उनकी धारियों की मदद से लगभग 85 प्रतिशत बार सही अंतर कर पाए। इससे लगता है कि जंतु अध्ययनों में टैटू या टैग लगाने की ज़रूरत नहीं होगी; इन धारियों की मदद से उनकी पहचान हो सकेगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.adi2393/abs/_20230411_on_pygmy_zebra_octopus.jpg

बढ़ता तापमान और बेसबॉल में बढ़ते होम रन

ह तो हम जानते हैं कि बढ़ता वैश्विक तापमान जीवन पर असर डालता है। लेकिन यह बात शायद थोड़ा हैरान कर दे कि यह खेलों को भी प्रभावित करता है। फिलहाल यह बात बेसबॉल के मामले में कही गई है।

दरअसल, हवा जितनी गर्म होगी उसका घनत्व उतना कम होगा। इसलिए वैश्विक तापमान में वृद्धि से, बल्ले द्वारा उछाली गई गेंद को हवा में कम घर्षण मिलेगा और सिद्धांतत: होम रन की संख्या बढ़ेगी। हालिया अध्ययन बताता है कि 2010 के बाद से मेजर लीग बेसबॉल (एमएलबी) में लगभग 0.8 प्रतिशत होम रन वैश्विक तापमान वृद्धि के कारण हुए हैं। हालांकि हाल के दशकों में होम रन की संख्या बढ़ने में अन्य कारकों की भूमिका भी रही है, जैसे खिलाड़ियों के बेहतर प्रयास और गेंद की डिज़ाइन आदि। बेसबॉल के खेल में आम तौर पर होम रन गेंद के मैदान को छुए बगैर सीमापार जाने पर माना जाता है।

वैसे 2012 में एक मैच के दौरान, पूर्व खिलाड़ी और कमेंटेटर टिम मैककार्वर ने संभावना जताई थी कि बढ़ते होम रन का कारण जलवायु परिवर्तन हो सकता है। उस समय तो यह विचार खारिज कर दिया गया था। लेकिन बेसबॉल प्रशंसक और जलवायु वैज्ञानिक क्रिस्टोफर कैलेहन ने इसे परखने का सोचा।

होम रन की बढ़ती संख्या में बढ़ते तापमान और घटते वायु घनत्व की भूमिका देखने के लिए कैलेहन के दल ने एमएलबी द्वारा सहेजे गए अथाह डैटा को देखा। एमएलबी ने दशकों से होम रन के आंकड़े तो सहेज ही रखे थे, साथ ही वर्ष 2015 से स्वचालित कैमरों और कंप्यूटरों द्वारा हर गेंद के वेग और प्रक्षेपवक्र का भी रिकॉर्ड रखा हुआ था।

दल ने 1962 से 2019 के बीच विभिन्न स्टेडियम में हुए एमएलबी मैचों वाले लगभग 1,00,000 दिनों के तापमान और होम रन का विश्लेषण किया। कंट्रोल के तौर पर उन्होंने 2015 से 2019 के बीच खेले गए मैचों में 2,20,000 बल्लेबाज़ों के हाई-स्पीड वीडियो फुटेज का विश्लेषण किया। दोनों विश्लेषणों के नतीजे एक ही थे: औसतन, तापमान में 1 डिग्री सेल्सियम की वृद्धि होम रन में लगभग 2 प्रतिशत की वृद्धि होती है। अमेरिकन मिटिरियोलॉजिकल सोसायटी के अनुसार हर 1 डिग्री सेल्सियस अतिरिक्त तापमान ने हर बेसबॉल सीज़न में 95 अतिरिक्त होम रन दिए हैं, और 2010 के बाद से 500 से भी अधिक अतिरिक्त होम रन बढ़ते तापमान की देन हैं।

वैसे, यह संख्या 2010 के बाद से मारे गए 65,300 से भी अधिक होम रन के सामने कुछ भी नहीं है। पिछले 40 सालों में प्रति गेम होम रन की संख्या 34 प्रतिशत बढ़ी है। और इसमें से अधिकांश बढ़त का जलवायु परिवर्तन से कोई लेना-देना नहीं है। होम रन की संख्या बढ़ने के मुख्य कारक बल्लेबाज़ के होम रन करने के प्रयास, और गेंद की सिलाई में बदलाव हैं।

बहरहाल, इतने अधिक और अच्छी तरह सहेजे गए डैटा की बदौलत जलवायु परिवर्तन का होम रन पर इतना बारीक प्रभाव पता लगा है और यह तापमान बढ़ने के साथ बढ़ेगा। तापमान बढ़ता रहा तो मैच के लिए रात का समय या बंद स्टेडियम पर विचार करना होगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.foxnews.com/foxnews.com/content/uploads/2022/10/aaron-judge-homer.jpg

ठंडक के लिए कमरे को ठंडा करना ज़रूरी नहीं! – एस. अनंतनारायणन

र्मी से राहत पाने के लिए हम अपने कमरे या अपने आसपास की जगह को ठंडा करने का जो तरीका अपनाते हैं, उससे हम उन चीजों को भी ठंडा कर देते हैं जिन्हें ठंडा करने की ज़रूरत नहीं होती। किसी कमरे में मौजूद चीज़ों की ऊष्मा धारिता, जिन्हें एयर कंडीशनर (एसी) ठंडा कर देता है, लोगों की ठंडक की ज़रूरत की तुलना में कई गुना अधिक होती है।

हाल ही में ETH इंस्टीट्यूट के सिंगापुर परिसर के एरिक टिटेलबौम और उनके दल ने प्रोसीडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेज़ में ‘विकिरण शीतलन’ (रेडिएटिव कूलिंग) पर एक अध्ययन प्रकाशित किया है। इस तकनीक में शरीर की गर्मी बाहर निकलेगी और शरीर ठंडा तो होगा लेकिन आसपास की चीज़ों को ठंडा करने में ऊर्जा ज़ाया नहीं होगी।

जिस तरह हम किसी वस्तु पर रंगीन रोशनी तो डाल सकते हैं, लेकिन हम उस पर ‘अंधेरा’ नहीं डाल सकते, उसी तरह गर्म वस्तुएं अपनी गर्मी तो बाहर छोड़ती या बिखेरती हैं, लेकिन ठंडी चीज़ें अपनी ‘ठंडक’ बाहर छोड़ती या फैलाती नहीं हैं। लेकिन ठंडी चीज़ें जितनी ऊष्मा उत्सर्जित करती हैं उसकी तुलना में अधिक ऊष्मा अवशोषित करती हैं। और ठंडी चीज़ों की मौजूदगी गर्म चीजों को अपनी ऊष्मा खोने और ठंडी होने में मदद करती है – तो सवाल सिर्फ उन चीज़ों को शीतल करने का है जिन्हें ठंडा करने की ज़रूरत है।

आम तौर पर हम गर्मी के मौसम में लोगों को ठंडक देने के लिए जिस तरीके का उपयोग करते हैं, वह है एयर कंडीशनिंग या वातानुकूलन। इसमें कमरों में ठंडी हवा छोड़ी जाती है। और सर्दियों में लोगों को गर्माहट देने के लिए हम ‘रेडिएटर्स’ या गर्म वस्तुओं का उपयोग करते हैं, जो कमरे की हवा को गर्म कर देते हैं, हालांकि लोग सीधे भी इन रेडिएटर्स की गर्मी को महसूस कर सकते हैं।

ठंडा करने के लिए एकमात्र व्यावहारिक तरीका है कि हवा को शीतलक से गुज़ार कर ठंडा किया जाए, और फिर इस ठंडी हवा को कमरे में फैलाया जाए (सिर्फ पंखे का उपयोग करें तो उसकी हवा से शरीर का पसीना वाष्पित होकर थोड़ी ठंडक महसूस कराता है)। इस तरह ठंडे किए जा रहे कमरे में लोग ठंडक या आराम महसूस करने लगें उसके पहले ठंडी हवा को दीवारों, फर्नीचर और फर्श को ठंडा करना पड़ता है।

मानव शरीर का तापमान लगभग 37 डिग्री सेल्सियस रहता है। चूंकि आसपास का परिवेश आम तौर पर अपेक्षाकृत ठंडा होता है, तो शरीर के भीतर ऊष्मा उत्पादन और बाहर ऊष्मा ह्रास के बीच संतुलन रहता है। यह ऊष्मा ह्रास मुख्य रूप से विकिरण के माध्यम से होता है; इस प्रक्रिया में गर्म शरीर परिवेश से अवशोषित ऊष्मा की तुलना में अधिक ऊष्मा बिखेरता है। कुछ ऊष्मा ह्रास हवा के संपर्क से भी होता है, लेकिन इस तरह से बहुत ज़्यादा ऊष्मा बाहर नहीं जाती है, क्योंकि हवा की ऊष्मा धारिता कम होती है।

समस्या तब शुरू होती है जब गर्मी के दिनों में बाहर का परिवेश शरीर की तुलना में गर्म हो जाता है, और शरीर पर्याप्त ऊष्मा नहीं बिखेर पाता। एकमात्र तरीका होता है कि पसीना आए जिसके वाष्पीकरण के माध्यम से शरीर की गर्मी बाहर निकल सके, लेकिन आसपास का परिवेश उमस (नमी) भरा हो तो पसीना आना कारगर नहीं होता है बल्कि बेचैनी बढ़ जाती है क्योंकि पसीने का वाष्पीकरण नहीं हो पाता।

प्रोसिडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेज़ में शोधकर्ताओं ने जिस तरीके का उपयोग किया है उसमें उन्होंने कमरे में एक विशेष रूप से निर्मित पर्याप्त ‘ठंडी’ सतह लगाई है जो मानव शरीर द्वारा उत्सर्जित ऊष्मा को अवशोषित तो करेगी लेकिन उसे पर्यावरण में वापस नहीं छोड़ेगी – यानी यह एकतरफा रास्ते (वन-वे) की तरह काम करेगी।

तो सवाल है कि कोई भी ठंडी सतह यह काम क्यों नहीं कर सकती? इसलिए कि कमरे की कोई भी साधारण सतह या चीज़ आसपास बहती गर्म हवा के संपर्क में आकर जल्दी गर्म हो जाएगी। इसके अलावा, हवा में मौजूद नमी ठंडी सतह पर संघनित हो जाएगी। और संघनन की प्रक्रिया से अत्यधिक ऊष्मा मुक्त होती है। वातानुकूलन के मामले में, दरअसल, कमरे में प्रवाहित हो रही हवा को सुखाने में जितनी ऊर्जा लगती है, वह ऊर्जा उस हवा को ठंडा करने में लगने वाली ऊर्जा से कहीं अधिक होती है। इस अध्ययन में शोधकर्ताओं ने जो व्यवस्था बनाई है वह इन दोनों प्रभावों को ध्यान रखती है और ठंडी सतह को केवल उस पर पड़ने वाले विकिरण द्वारा ऊष्मा सोखने देती है।

शोधकर्ताओं द्वारा बनाई गई यह व्यवस्था धातु की चादर लगी एक दीवार थी जिसे ठंडे किए गए पानी की मदद से 17 डिग्री सेल्सियस पर रखा गया था। इस व्यवस्था को उन्होंने सिंगापुर में एक तंबू को ठंडा करने में आज़माया, जिसका तापमान लगभग 30 डिग्री सेल्सियस था। आम तौर पर, हवा (संवहन द्वारा) धातु की चादर को गर्म कर देती है। लेकिन यहां ऐसा न हो इसलिए इस व्यवस्था में एक कम घनत्व वाली पॉलीएथलीन झिल्ली को इंसुलेटर के रूप में धातु की चादर के ऊपर लगाया गया था। अध्ययन के अनुसार, “…हम ऊष्मा स्थानांतरण के इस अवांछित संवहन को हटा पाए”। बहरहाल, यह झिल्ली विकिरण ऊष्मा के लिए पारदर्शी थी, और तंबू में मौजूद लोगों के गर्म शरीर का ऊष्मा विकिरण इससे गुज़र सकता था ताकि उसे अंदर की ठंडी सतह सोख सके।

हवा से संपर्क वाली सतह को इन्सुलेशन झिल्ली ने अधिक ठंडा होने से बचाए रखा जिसकी वजह से संघनन नहीं हो पाया। परीक्षणों में देखा गया कि 66.5 प्रतिशत आर्द्रता होने पर भी 23.7 डिग्री सेल्सियस (जिस तापमान पर संघनन शुरू होता है) पर भी दीवार की सतह पर कोई संघनन नहीं हुआ था। अध्ययन के अनुसार, दीवार के अंदर से गुज़रता ठंडा पानी संघनन तापमान से भी कम, 12.7 डिग्री सेल्सियस, तक भी ठंडा रखा जा सकता है।

मानव आराम के बारे में क्या? सिंगापुर में 8 से 27 जनवरी के दौरान, जब वहां गर्मी का मौसम पड़ता है, 55 लोगों के साथ यह देखा गया कि उन्होंने कैसी ठंडक महसूस की। 55 लोगों में से 37 लोगों ने तंबू में तब प्रवेश किया था जब शीतलन प्रणाली चालू थी, और बाकी 18 लोगों ने तब प्रवेश किया जब शीतलन प्रणाली बंद थी। जिस समूह ने शीतलन प्रणाली चालू रहते प्रवेश किया था, उन्होंने 79 प्रतिशत दफे तंबू में तापमान ‘संतोषजनक’ बताया। यह देखा गया कि वहां मौजूद गर्म वस्तुओं ने अपनी गर्मी अवशोषक दीवार को दे दी थी। और सबसे गर्म ‘वस्तुएं’ मनुष्य थे और उन्होंने ही सबसे अधिक ऊष्मा गंवाई। हालांकि, हवा (या तंबू) का तापमान बमुश्किल ही कम हुआ था, 31 डिग्री सेल्सियस से घटकर यह सिर्फ 30 डिग्री सेल्सियस हुआ था। इस अंतिम अवलोकन से पता चलता है कि हवा को ठंडा करने में बहुत कम ऊर्जा खर्च हो रही थी, जबकि पारंपरिक शीतलन प्रणालियों में तापमान घटाने के लिए मुख्य वाहक हवा ही होती है।

इस तरह इस अध्ययन में प्रस्तुत यह तकनीक एयर कंडीशनर की जगह बखूबी ले सकती है। शोधकर्ताओं का कहना है कि इस तकनीक से ऊर्जा की खपत में 50 प्रतिशत तक कमी आ सकती है, सिर्फ ऊष्मा सोखने वाली दीवारों तक ठंडे पानी को पहुंचाने में ऊर्जा लगेगी। यह इस लिहाज़ से महत्वपूर्ण है कि विश्व की कुल ऊर्जा खपत में से एयर कंडीशनिंग की ऊर्जा एक बड़ा हिस्सा है और इसके बढ़ने की संभावना है। नई प्रणाली का एक अन्य लाभ यह है कि ठंडे किए जा रहे स्थान खुली खिड़की वाले, हवादार भी हो सकते हैं। एयर कंडीशनिंग में, किफायत के लिहाज से यह मांग होती है कि अधिकांश ठंडी हवा को पुन: कमरे में घुमाया जाता रहे। तब ऑफिस में यदि कोई व्यक्ति सर्दी-ज़ुकाम (या ऐसे ही किसी संक्रमण) से पीड़ित हो तो पूरी संभावना है कि वह बाकियों को भी अपना संक्रमण दे देगा।

विकिरण शीतलन (रेडिएंट कूलिंग) की तकनीक काम करती है क्योंकि मानव शरीर से निकलने वाली ऊष्मा आसपास की हवा द्वारा नहीं सोखी जाती है जिसे वापिस मुक्त कर दिया जाए; वह तो ठंडी सतह तक पहुंच सकती है। वैसे, धरती के पैमाने पर देखें तो वायुमंडल ऊष्मा को पृथ्वी से बाहर नहीं निकलने देता है, यही कारण है कि रात में पृथ्वी बहुत ठंडी नहीं होती है (और इसलिए वायुमंडल में परिवर्तन वैश्विक तापमान बढ़ने का कारण बन रहे हैं)। हालांकि, 8-13 माइक्रोमीटर तरंग दैर्घ्य के लिए हमारा वायुमंडल ऊष्मा के लिए पारदर्शी है। इस परास की तरंग दैर्घ्य वाला ऊष्मा विकिरण वायुमंडल से बाहर सीधे अंतरिक्ष में जाता है। इस तथ्य का फायदा उठाने के लिए वस्तुओं को ऐसी फिल्म या शीट से ढंका जाता है जो वस्तुओं से निकलने वाली गर्मी को वांछित रेंज की तरंग दैर्घ्य में परिवर्तित कर दें। नतीजा यह होता है कि धूप में रखी जाने पर ये वस्तुएं रेडिएटिव कूलिंग के माध्यम से परिवेश की तुलना में 4-5 डिग्री सेल्सियस तक ठंडी हो सकती हैं। यह तकनीक ‘ग्रीन’ कोल्ड स्टोरेज और सौर ऊर्जा पैनल, जो गर्म होने पर कम कुशल हो जाते हैं, के लिए उपयोगी हो सकती है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://sec.ethz.ch/research/cold-tube/_jcr_content/par/fullwidthimage/image.imageformat.930.217877901.jpg

कार्बन डाईऑक्साइड: उत्सर्जन घटाएं या हटाएं?

हालिया जलवायु सम्मेलनों में नेट-ज़ीरो उत्सर्जन काफी चर्चा में रहा। इसमें नेट शब्द का अर्थ है कि हम सिर्फ उत्सर्जन कम करने पर नहीं बल्कि कार्बन डाईऑक्साइड को वातावरण में हटाने पर भी ध्यान दें। एक विचार यह है कि सिर्फ उत्सर्जन कम करके हम 1.5 या 2 डिग्री वृद्धि का लक्ष्य नहीं पा सकेंगे।

फिलहाल उड्डयन और नौपरिवहन ग्रीनहाउस गैसों के सबसे बड़े स्रोत हैं, और आगे भी बने रहने की संभावना है। ऐसे में बड़े पैमाने पर कार्बन उत्सर्जन को पूरी तरह समाप्त नहीं किया जा सकता है। इसलिए कार्बन डाईऑक्साइड रिमूवल (सीडीआर) की भी आवश्यकता है।

सीडीआर का ऐतिहासिक तरीका पेड़ लगाना रहा है, लेकिन वातावरण से कार्बन डाईऑक्साइड हटाकर भूमि, समुद्र या अन्य स्थानों पर संग्रहित कर देना शायद अधिक टिकाऊ साबित हो।

वर्तमान में कई कंपनियां विभिन्न सीडीआर तकनीकों को जलवायु समाधान के रूप में प्रस्तुत कर रही हैं। इस विषय में प्राकृतिक कार्बन चक्र और हाल ही में सीडीआर तकनीकों पर काम कर रहे डेविड टी. हो लंबी अवधि के लिए सीडीआर तकनीकों को विकसित करने के पक्ष में तो हैं लेकिन थोड़े संशय में हैं। गौरतलब है कि पूर्व में डायरेक्ट एयर कैप्चर (डीएसी) तकनीक का छोटे स्तर पर प्रदर्शन किया गया था जो रासायनिक तरीकों से कार्बन डाईऑक्साइड को वातावरण से बाहर करती है। इसके लिए 2022 में यू.एस. बायपार्टीज़न इंफ्रास्ट्रक्चर कानून ने चार डीएसी विकसित करने के लिए 3.5 अरब डॉलर का अनुदान देने का भी निर्णय लिया था। लेकिन डेविड के अनुसार यह प्रयास तब तक व्यर्थ है जब तक प्रदूषणकारी गतिविधियों को पूरी तरह से खत्म न कर दिया जाए।

इसको इस तरह से समझें। हमें कार्बन डाईऑक्साइड के स्तर को कई वर्ष पहले की स्थिति में ले जाना है। प्रत्येक डीएसी सुविधा से प्रतिवर्ष 10 लाख टन कार्बन डाईऑक्साइड वातावरण से बाहर करने की उम्मीद है। अब देखिए कि 2022 में 40.5 अरब टन कार्बन डाईऑक्साइड का उत्सर्जन हुआ है। यदि डीएसी संयंत्र वर्ष भर अपनी पूरी क्षमता के साथ काम करते हैं तो इससे वातावरण की स्थिति को मात्र 13 मिनट पीछे ले जाया जा सकता है। लेकिन 13 मिनट में जितनी कार्बन डाईऑक्साइड हटाई जाएगी उतने ही समय में बाकी गतिविधियां साल भर की कार्बन डाईऑक्साइड वापस वातावरण में उंडेल देंगी। अब यह देखिए कि यदि हर व्यक्ति एक पेड़ लगाए इन 8 अरब पेड़ों के परिपक्व होने के बाद हमारा वातावरण हर वर्ष 43 घंटे पीछे जा सकता है।

कुल मिलाकर इससे यह अंदाज़ा लगाया जा सकता है कि सीडीआर तकनीकों की क्षमता कितनी सीमित है।

ऐसे में सीडीआर तकनीकों को तत्काल समाधान के रूप में देखना उचित नहीं है। आने वाले समय में जलवायु समाधानों के लिए काफी धन आवंटित होने की उम्मीद है जिसका सही दिशा में उपयोग करना आवशयक है। यदि हम कार्बन डाईऑक्साइड उत्सर्जन के मौजूदा स्तर को लगभग 10 प्रतिशत यानी 4 अरब टन प्रति वर्ष तक कम करते हैं तो 10 लाख टन हटाने में सक्षम एक डीएसी संयंत्र हमें 13 मिनट के बजाय 2 घंटे से अधिक समय पीछे ले जाएगी। इस स्थिति को देखते हुए एक निर्धारित वर्ष में नेट ज़ीरो हासिल करने के लिए पूरी तरह से अक्षय ऊर्जा द्वारा संचालित 4000 डीएसी सुविधाओं की आवश्यकता होगी।

इस तरह से अवशिष्ट उत्सर्जन संभवत: हमारे वर्तमान कुल उत्सर्जन का 18 प्रतिशत होगा, इसलिए नेट-ज़ीरो तक पहुंचने के लिए कई सीडीआर स्थापित करने होंगे। तकरीबन 7290 डीएसी हब बनाना पर्याप्त होगा। साथ ही, सीडीआर विधियों की खोज के लिए अधिक शोध की आवश्यकता है जो भूमि उपयोग और ऊर्जा खपत को कम करें तथा जिन्हें स्थायी और सस्ता बनाया जा सके।

फिर भी, यह ज़रूरी नहीं कि प्रयोगशाला में सुचारू रूप से काम करने वाली तकनीकें वास्तविक दुनिया में भी वैसे ही काम करेंगी। इनमें से कुछ तकनीकें जैव विविधता और पर्यावरण के लिए हानिकारक भी हो सकती हैं। यह सुनिश्चित करना एक बड़ी चुनौती है कि सीडीआर वास्तव में कितना काम कर रहा है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.nature.com/w400/magazine-assets/d41586-023-00953-x/d41586-023-00953-x_25192722.jpg

प्रतिबंधित सीएफसी का बढ़ता स्तर

मॉन्ट्रियल प्रोटोकॉल (1987) के तहत ओज़ोन को क्षति पहुंचाने वाले रसायन क्लोरोफ्लोरोकार्बन (सीएफसी) के उपयोग को 2010 तक पूरी तरह खत्म करने का संकल्प लिया गया था। यह काफी सफल रहा था और उम्मीद थी कि 2060 ओज़ोन परत बहाल हो जाएगी। लेकिन ताज़ा आंकड़ों ने वैज्ञानिकों की चिंता बढ़ा दी है।

नेचर जियोसाइंस में प्रकाशित रिपोर्ट के अनुसार 2010 से 2020 के बीच 5 प्रकार के सीएफसी के स्तर में काफी तेज़ी से वृद्धि हुई है। वैज्ञानिकों का मानना है कि इन सीएफसी का वर्तमान स्तर ओज़ोन परत की बहाली के लिए ज़्यादा खतरा उत्पन्न नहीं करता है। लेकिन सीएफसी शक्तिशाली ग्रीनहाउस गैसें भी हैं जो जलवायु को प्रतिकूल प्रभावित करती हैं। गौरतलब है सीएफसी सैकड़ों वर्षों तक वातावरण में बने रहते हैं। इन 5 सीएफसी की वजह से वातावरण जितना गर्म होगा वह स्विट्ज़रलैंड जैसे किसी छोटे देश द्वारा किए गए उत्सर्जन के असर के बराबर होगा।

विशेषज्ञों के अनुसार काफी संभावना है कि सीएफसी विकल्पों के उत्पादन के दौरान संयंत्रों से गलती से सीएफसी-113A, सीएफसी-114A और सीएफसी-115 का उत्सर्जन हो रहा हो। वास्तव में सीएफसी को खत्म करने के लिए हाइड्रोफ्लोरोकार्बन (एचएफसी) को विकल्प के रूप में लाया गया था। लेकिन एचएफसी उत्पादन के दौरान अनपेक्षित रूप से सीएफसी के उत्पादन की संभावना बनी रहती है। इस प्रकार के उत्पादन को मॉन्ट्रियल प्रोटोकॉल के तहत हतोत्साहित किया गया था लेकिन प्रतिबंधित नहीं किया गया था।

अन्य दो सीएफसी (सीएफसी-13 और सीएफसी-112A) के स्तर में वृद्धि एक रहस्य है क्योंकि इनका उत्पादन या उपयोग  प्रतिबंधित है। संभावना है कि विलायक या रासायनिक फीडस्टॉक के तौर पर उपयोग के कारण सीएफसी-112A के स्तर में वृद्धि हो रही है। लेकिन सीएफसी-13 के उत्सर्जन का अभी तक कोई सुराग नहीं है। वैश्विक स्तर पर पर्याप्त निगरानी स्टेशन की अनुपस्थिति में सीएफसी-13 के स्रोत का पता लगाना मुश्किल है।    

बहरहाल, आंकड़ों से इतना तो स्पष्ट है कि वैश्विक निगरानी प्रणाली काफी सक्रियता से काम कर रही है और वैज्ञानिकों द्वारा पृथ्वी के वातावरण और जलवायु समस्याओं पर कड़ी नज़र रखी जा रही है। पूर्व में भी दक्षिण कोरिया और जापान के निगरानी स्टेशन से सीएफसी-11 के उच्च स्तर का पता लगा था, जिसका स्रोत पूर्वी चीन में मिला था। इसके उत्सर्जन को नियंत्रित किया गया और इसके स्तर में कमी आने लगी। लिहाज़ा, अधिक निगरानी स्टेशनों की ज़रूरत है।

यदि हाल ही में खोजे गए 5 सीएफसी का अधिकांश उत्सर्जन सीएफसी-विकल्पों के उत्पादन के दौरान हो रहा है तो विकल्पों के बारे में विचार करना आवश्यक है। शायद हाइड्रोफ्लोरोओलीफीन्स (एचएफओ) का उपयोग करना होगा। लेकिन उसके उत्पादन से भी सीएफसी का उत्सर्जन हो सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://fl-i.thgim.com/public/news/9kldkt/article66755088.ece/alternates/LANDSCAPE_1200/fl05%20SN1.JPG

हम सूंघते कैसे हैं

गंध एक महत्वपूर्ण संवेदना है। मनुष्यों में यह शायद उतनी महत्वपूर्ण न हो, लेकिन कई अन्य जंतुओं में यह सबसे महत्वपूर्ण संवेदना होती है। जहां अन्य संवेदनाओं को लेकर हमारी समझ काफी विस्तृत है, वहीं गंध को लेकर कई अस्पष्टताएं हैं। अब हम इस दिशा में एक कदम और आगे बढ़े हैं।

गंध संवेदना दरअसल एक रसायन-आधारित संवेदना है। कुछ रसायन हमारी गंध संवेदी तंत्रिकाओं के ग्राहियों को उत्तेजित करते हैं और मस्तिष्क इसे गंध के रूप में पहचानता है। अब पहली बार एक मानव गंध-ग्राही की सटीक त्रि-आयामी संरचना का खुलासा किया गया है। नेचर में प्रकाशित इस अध्ययन में OR51E2 नामक एक गंध-ग्राही की संरचना का विवरण देते हुए बताया गया है कि यह आणविक क्रियाओं के माध्यम से कैसे चीज़ (cheese) की गंध को ताड़ता है।

गौरतलब है कि मानव जीनोम में 400 जीन्स होते हैं जो गंध-ग्राहियों के कोड हैं और ये ग्राही कई गंधों को पहचान सकते हैं। स्तनधारियों में गंध ग्राही के जीन्स सबसे पहले चूहों में 1990 के दशक में पहचाने गए थे। इससे पहले 1920 के दशक में यह अनुमान लगाया गया था कि मनुष्य की नाक तकरीबन 1000 गंधों को ताड़ सकती है। लेकिन 2014 में किए गए एक अध्ययन का निष्कर्ष था कि हम 1 खरब से ज़्यादा गंधों को अलग-अलग पहचान सकते हैं।

हर गंध-ग्राही गंधदार अणुओं (ओडोरेंट) के सिर्फ एक समूह से अंतर्क्रिया कर सकता है जबकि एक ही ओडोरेंट कई ग्राहियों को सक्रिय कर सकता है। होता यह है कि इन ग्राहियों की एक मिश्रित सक्रियता विशिष्ट गंध का एहसास कराती है।

लेकिन इन गंध-ग्राहियों की क्रिया को समझना एक चुनौती रही है। एक दिक्कत यह रही है कि ये ग्राही सिर्फ गंध तंत्रिकाओं में ही ठीक-ठाक काम करते हैं, बाकी किसी भी कोशिका में ये ठप हो जाते हैं। इसका मतलब यह होता है कि इन्हें किसी भी अन्य प्रकार की कोशिका में जोड़कर अध्ययन नहीं किया जा सकता।

इस समस्या से निपटने के लिए कैलिफोर्निया विश्वविद्यालय (सैन फ्रांसिस्को) के आशीष मांगलिक और उनके साथियों ने OR51E2 नामक ग्राही पर ध्यान केंद्रित किया। इस ग्राही की विशेषता है कि यह ओडोरेंट की पहचान के अलावा कुछ अन्य कार्य भी करता है और यह गुर्दों तथा प्रोस्टेट की कोशिकाओं में भी पाया जाता है।

यह ग्राही (OR51E2) दो ओडोरेंट अणुओं के साथ अंतर्क्रिया करता है – एसिटेट (जिसकी गंध सिरके जैसी होती है) और प्रोपिओनेट (जिसकी गंध चीज़नुमा होती है)। शोधकर्ताओं ने इस ग्राही को शुद्ध रूप में प्राप्त किया और फिर प्रोपिओनेट से सम्बद्ध तथा असम्बद्ध OR51E2 की संरचना का विश्लेषण किया। इसके लिए उन्होंने क्रायो-इलेक्ट्रॉन माइक्रोस्कोपी और एटॉमिक रिज़ॉल्यूशन इमेजिंग तकनीकों का इस्तेमाल किया। इसके अलावा उन्होंने कंप्यूटर सिमुलेशन की भी मदद ली ताकि पता चल सके कि यह ग्राही प्रोटीन ओडोरेंट अणुओं के साथ कैसे अंतर्क्रिया करता है।

विश्लेषण से पता चला कि यह प्रोटीन (OR51E2) आयनिक व हाइड्रोजन बंधनों के ज़रिए प्रोपिओनेट अणु के कार्बोक्सिलिक समूह को एक अमीनो अम्ल (आर्जीनीन) से जोड़ लेता है। जैसे ही प्रोपिओनेट जुड़ता है, OR51E2 की आकृति बदल जाती है और यही ग्राही को चालू कर देता है। शोधकर्ताओं ने दर्शाया है कि इस ग्राही के जीन में आर्जीनीन को प्रभावित करने वाले उत्परिवर्तन उसे प्रोपिओनेट द्वारा सक्रिय नहीं होने देते।

वैज्ञानिकों की इच्छा रही है कि वे गंध ग्राहियों की रासायनिक संरचनाओं का एक कैटालॉग तैयार कर सकें और उसके आधार पर यह बता सकें कि इनमें से कौन-से ग्राही मिलकर किस गंध विशेष का एहसास कराते हैं। मांगलिक की टीम द्वारा यह खुलासा मात्र पहला कदम है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.nature.com/lw767/magazine-assets/d41586-023-00439-w/d41586-023-00439-w_24603628.png

मानव मस्तिष्क ऑर्गेनॉइड का चूहों में प्रत्यारोपण

जकल ऑर्गेनॉइड्स (अंगाभ) अनुसंधान की एक प्रमुख धारा है। ऑर्गेनॉइड का मतलब होता है ऊतकों का कृत्रिम रूप से तैयार किया गया एक ऐसा पिंड जो किसी अंग की तरह काम करे। विभिन्न प्रयोगशालाओं में विभिन्न अंगों के अंगाभ बनाने के प्रयास चल रहे हैं। इन्हीं में से एक है मस्तिष्क अंगाभ।

सेल स्टेम सेल नामक शोध पत्रिका में प्रकाशित एक शोध पत्र में बताया गया है कि पेनसिल्वेनिया विश्वविद्यालय के शोधकर्ताओं ने मानव मस्तिष्क अंगाभ को चूहे के क्षतिग्रस्त मस्तिष्क में सफलतापूर्वक प्रत्यारोपित कर दिया है। और तो और, अंगाभ ने शेष मस्तिष्क के साथ कड़ियां भी जोड़ लीं और प्रकाश उद्दीपन पर प्रतिक्रिया भी दी।

शोध समुदाय में इसे एक महत्वपूर्ण अपलब्धि माना जा रहा है क्योंकि अन्य अंगों की तुलना में मस्तिष्क कहीं अधिक जटिल अंग है जिसमें तमाम कड़ियां जुड़ी होती हैं। इससे पहले मस्तिष्क अंगाभ को शिशु चूहों में ही प्रत्यारोपित किया गया था; मनुष्यों की बात तो दूर, वयस्क चूहों पर भी प्रयोग नहीं हुए थे। 

वर्तमान प्रयोग में पेनसिल्वेनिया की टीम ने कुछ वयस्क चूहों के मस्तिष्क के विज़ुअल कॉर्टेक्स नामक हिस्से का एक छोटा सा भाग निकाल दिया। फिर इस खाली जगह में मानव मस्तिष्क कोशिकाओं से बना अंगाभ डाल दिया। यह अंगाभ रेत के एक दाने के आकार का था। अगले तीन महीनों तक इन चूहों के मस्तिष्क की जांच की गई।

जैसी कि उम्मीद थी प्रत्यारोपित अंगाभों में 82 प्रतिशत पूरे प्रयोग की अवधि में जीवित रहे। पहले महीने में ही स्पष्ट हो गया था कि चूहों के मस्तिष्कों में इन अंगाभों को रक्त संचार में जोड़ लिया गया था और जीवित अंगाभ चूहों के दृष्टि तंत्र में एकाकार हो गए थे। यह भी देखा गया कि अंगाभों की तंत्रिका कोशिकाओं और चूहों की आंखों के बीच कनेक्शन भी बन गए थे। यानी कम से कम संरचना के लिहाज़ से तो अंगाभ काम करने लगे थे। इससे भी आगे बढ़कर, जब शोधकर्ताओं ने इन चूहों की आंखों पर रोशनी चमकाई तो अंगाभ की तंत्रिकाओं में सक्रियता देखी गई। अर्थात अंगाभ कार्य की दृष्टि से भी सफल रहा था। लेकिन फिलहाल पूरा मामला मनुष्यों में परीक्षण से बहुत दूर है हालांकि यह सफलता आगे के लिए आशा जगाती है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdn.the-scientist.com/assets/articleNo/70938/aImg/49292/organoid-ai-o.jpg