कार्बन-कार्बन एकल इलेक्ट्रॉन बंध देखा गया

अंजु दास मानिकपुरी

मारे आसपास की चीज़ें परमाणुओं से बनी होती हैं, लेकिन ये परमाणु अलग-अलग नहीं तैरते रहते हैं। वे आम तौर पर दूसरे परमाणुओं (Atoms) (या परमाणुओं के समूहों) के साथ जुड़ जाया करते हैं। उदाहरण के लिए, परमाणु मज़बूत बंधनों से जुड़े हो सकते हैं और अणुओं (Molecules) या क्रिस्टल (Crystals) में व्यवस्थित हो सकते हैं या वे दूसरे परमाणुओं के साथ, जिनसे वे टकराते हैं, अस्थायी, कमज़ोर बंधन बना सकते हैं । अणुओं को एक साथ रखने वाले मज़बूत बंधन और अस्थायी कनेक्शन (Temporary Connections) बनाने वाले कमज़ोर बंधन दोनों ही हमारे जीवन के अस्तित्व के लिए महत्वपूर्ण हैं।

आखिर रासायनिक बंधन (Chemical Bonding)  क्यों बनते हैं? दरअसल परमाणु सबसे स्थिर (सबसे कम ऊर्जा) अवस्था तक पहुंचने की कोशिश करते हैं। कई परमाणु इसलिए स्थिर होते हैं क्योंकि उनके इलेक्ट्रॉन विन्यास (Electron Configuration) में सबसे बाहरी खोल इलेक्ट्रॉनों से परिपूर्ण होते हैं (अधिकांश परमाणुओं के संदर्भ में यह स्थिति वह होती है जब सबसे बाहरी खोल में 8 इलेक्ट्रॉन हों, या कुछ मामलों में 2 इलेक्ट्रॉन से भी काम चल जाता है।) यदि परमाणुओं में यह व्यवस्था नहीं है, तो उनमें अन्य परमाणुओं से बंध बनाकर यह स्थिति प्राप्त करने की प्रवृत्ति होती है। ऐसा अतिरिक्त इलेक्ट्रॉन (Electrons) प्राप्त करके, गंवाकर या साझा करके किया जाता है। परमाणुओं के बीच बंध मूलत: उनके बीच उपस्थित इलेक्ट्रॉन के प्रति नाभिकों के आकर्षण का परिणाम होते हैं। इस लिहाज़ से बंध तीन प्रकार के हो सकते हैं।

आयनिक बंधन (Ionic Bonding) में परमाणु इलेक्ट्रान को पूरी तरह से प्राप्त करके या गंवाकर आयन बनता है। जब इलेक्ट्रॉन प्राप्त किया जाता है तो ऋणायन (Anion)  बनता है और इलेक्ट्रॉन गंवाने के परिणामस्वरूप धनायन (Cation)  बनता है। आयनिक बंधन इन्हीं विपरीत आवेशों वाले आयनों के बीच आकर्षण होता है। उदाहरण के लिए, धन-आवेशित सोडियम आयन और ऋण-आवेशित क्लोराइड आयन एक दूसरे को आकर्षित करके सोडियम क्लोराइड (Sodium Chloride)  या टेबल सॉल्ट (Table Salt) बनाते हैं।

सहसंयोजी बंध (Covalent Bonding) में परमाणु इलेक्ट्रॉनों को पूरी तरह से प्राप्त करने या खोने की बजाय साझा करते हैं। इसलिए अणुओं में सहसंयोजी बंधों की संख्या इस बात पर निर्भर करेगी कि किन्हीं दो परमाणुओं के बीच कितने इलेक्ट्रॉन साझा किए जा रहे हैं। यदि वे तीन-तीन इलेक्ट्रॉन साझा करते हैं तो वह तिहरा (ट्रिपल) बंध बनेगा, जैसे कि नाइट्रोजन के अणु (Nitrogen Molecule) में होता है। यदि दो इलेक्ट्रॉन साझा हो रहे हों तो दोहरा (डबल) बंध बनेगा, उदाहरण के तौर पर ऑक्सीजन का अणु देखा जा सकता है। इसी तरह से 1-1 इलेक्ट्रॉन साझा हो रहे हों तो यह एकल (सिंगल) बंध बनाएगा। जैसे हाइड्रोजन में। ऐसे बंध अलग-अलग किस्म के परमाणुओं के बीच भी बन सकते हैं। जैसे नाइट्रोजन और ऑक्सीजन के बीच या हाइड्रोजन और ऑक्सीजन के बीच। वैसे नोबेल विजेता रसायनज्ञ लायनस पौलिंग (Linus Pauling) ने 1931 में सुझाया था कि सहबंध मात्र 1 इलेक्ट्रॉन की साझेदारी से भी बन सकते हैं। तब से कई ऐसे 1 इलेक्ट्रॉन की साझेदारी वाले सह-बंध देखे जा चुके हैं।

इन दो के अलावा एक तीसरे किस्म का बंध भी बनता है – उप-सहसंयोजी बंध। लेकिन यहां हम सहसंयोजी बंधों पर ध्यान देंगे।

रसायनज्ञ जानते हैं कि परमाणु विभिन्न तरीकों से आपस में जुड़ा करते हैं और जुड़ाव की प्रकृति का रसायन समझने के लिए रसायनज्ञ सतत अध्ययन करते रहते हैं। इसके लिए रसायनज्ञ नए अणुओं का संश्लेषण भी करते हैं और प्रकृति में मौजूद अणुओं के क्रिस्टल को भी अपने अध्ययन में शामिल करते हैं। हर तरह की परिस्थिति में इन अणुओं की बनावट और इनमें परमाणुओं की जमावट का लगातार अध्ययन करते हुए यह जानने की कोशिश करते हैं कि आखिर रासायनिक बंध क्या है (यानी कौन-सी शक्ति परमाणुओं को आपस में बांधती है) और इसकी प्रकृति क्या है?

इस सतत अध्ययन का नतीजा एकल इलेक्ट्रॉन सहसंयोजी बंध है। आम तौर पर सहबंध के मामले में यह मान्यता रही है कि बंध में शामिल दोनों परमाणु कम से कम एक-एक इलेक्ट्रॉन साझा करेंगे। यानी कुल कम से कम दो इलेक्ट्रॉन साझा होंगे। लेकिन फिर 1998 में, सीएनआरएस के वाय. कैनेक की टीम ने दो फॉस्फोरस परमाणुओं के बीच एक एकल-इलेक्ट्रॉन बंध देखा। यह बंध एक बेंज़ीन अणु में दो फॉस्फोरस परमाणुओं के बीच देखा गया था। इस बंध में दोनों परमाणुओं के बीच एक ही इलेक्ट्रॉन साझा हुआ था। अलबत्ता, यह बंध दुर्बल स्वभाव का था। कैलिफोर्निया इंस्टीट्यूट ऑफ टेक्नॉलॉजी के शोधकर्ता मार्क एटिएन मोरेट के शोध समूह ने 2013 में तांबे और बोरॉन के बीच ऐसा ही एकल इलेक्ट्रॉन बंध पाया था।

लेकिन अब तक दो कार्बन परमाणुओं के बीच ऐसा एकल इलेक्ट्रॉन सहसंयोजी बंध नहीं देखा गया था। रसायनज्ञों ने इन सभी अणुओं का अध्ययन करते हुए पाया कि ये असामान्य बंध परमाणुओं के बीच थोड़े समय के लिए ही बन सकते हैं जो रासायानिक अभिक्रियाओं के दौरान मध्यवर्ती संरचनाओं में बनते हैं। ये बंध अस्थिर होने के कारण आसानी से टूट जाएंगे इसलिए इन अस्थिर बंधों को देखने के लिए, ऐसे बंध वाले यौगिक को स्थिर करना होगा। हाल तक कार्बन परमाणुओं के बीच ऐसे एकल इलेक्ट्रॉन बंध नहीं देखे जा सके थे।

कार्बन के विशिष्ट गुणों के चलते कार्बन रसायन विज्ञान की अपनी शाखा है जिसे कार्बनिक रसायन कहा जाता है और कार्बन के यौगिक जीवन के आधार भी हैं। कार्बन गुणों में विशेष है। कार्बन में यह क्षमता है कि वह केवल अपने ही परमाणुओं की लंबी-लंबी शृंखलाएं बना सकता है। कार्बन के एक दर्जन या उससे ज़्यादा एलोट्रोप (अपररूप) होते हैं जिनमें कार्बन परमाणुओं की जमावट के कारण एकदम अलग-अलग गुण पाए जाते हैं। इनमें ग्रेफाइट, ग्रेफीन, हीरा, एस्बेस्टॉस और बकीबॉल शामिल हैं।

और अब, कार्बन की उपलब्धियों में एक और उपलब्धि जुड़ गई है – एकल इलेक्ट्रॉन सहसंयोजी बंध बनाने की क्षमता। जापान के होक्काइडो विश्वविद्यालय के चार वैज्ञानिकों की शोध टीम हेक्साफिनाइलएथेन के एक व्युत्पन्न के बारे में अध्ययन कर रही है। वे इस बाबत शोध कर रहे थे कि जब हेक्साफिनाइलएथेन का ऑक्सीकरण आयोडीन की उपस्थिति में किया जाता है तो क्या होता है। 25 सितंबर 2024 के दिन इस टीम को ऐसा अवलोकन करने को मिला जो वास्तव में 93 साल पहले नोबेल पुरस्कार विजेता लायनस पॉलिंग द्वारा सुझाया गया था। इस तरह वैज्ञानिकों ने दो कार्बन परमाणुओं के बीच एकल इलेक्ट्रॉन सहसंयोजी बंध के एक सदी पुराने सपने को साकार किया है।

इस शोध टीम को हेक्साफिनाइलएथेन के एक व्युत्पन्न यौगिक में कार्बन परमाणुओं के बीच एक स्थिर एकल-इलेक्ट्रॉन सहसंयोजी बंध मिला। एकल बंध के बारे में बेहतर तरीके से जानने के लिए जरूरी था कि एक ऐसा यौगिक बनाया जाए जो एकल बंध को स्थिर कर सके। इसे प्राप्त करने के लिए, शोध टीम द्वारा हेक्साफिनाइलएथेन के ऐसे व्युत्पन्न अणु का चुनाव किया गया जिसमें दो कार्बन परमाणुओं के बीच एक बहुत लम्बा युग्मित-इलेक्ट्रॉन वाला सहसंयोजी बंध था। उन्होंने आयोडीन का उपयोग करके हेक्साफिनाइलएथेन के व्युत्पन्न को ऑक्सीकृत किया जिससे एक बैंगनी रंग का क्रिस्टल मिला। एक्स-रे क्रिस्टलोग्राफी की मदद से जांच करने पर उन्होंने देखा कि दो कार्बन परमाणु एक एकल-इलेक्ट्रॉन सहसंयोजी बंध के कारण काफी करीब आ गए थे। रमन स्पेक्ट्रोस्कोपी ने एकल इलेक्ट्रॉन कार्बन-कार्बन बंध की उपस्थिति की पुष्टि की। दरअसल क्रिस्टल के अणु का केंद्रीय कार्बन-कार्बन बंध खिंच जाने से यह एक इलेक्ट्रॉन खोने के लिए अतिसंवेदनशील हो जाता है और इस तरह एकल-इलेक्ट्रॉन बंध बनता है।

टोक्यो विश्वविद्यालय के रसायनज्ञ ताकुया शिमाजिरी, जो कार्बन बॉन्डिंग शोध टीम का हिस्सा थे, कहते हैं, “सहसंयोजी  बंध रसायन विज्ञान में सबसे महत्वपूर्ण अवधारणाओं में से एक है, और नए प्रकार के रासायनिक बंधनों की खोज आशाजनक है।”

1931 में, रसायनज्ञ लायनस पॉलिंग ने जर्नल ऑफ दी अमेरिकन केमिकल सोसाइटी (Journal of the American Chemical Society)  में कार्बन परमाणुओं की एक जोड़ी के बीच एकल इलेक्ट्रॉन सहसंयोजी (single-electron covalent bond) की संभावना के बारे में लिखा था। पॉलिंग का सुझाव था कि एकल-इलेक्ट्रॉन सहसंयोजी बंध मौजूद हो सकते हैं, लेकिन वे सामान्य दो-इलेक्ट्रॉन सहसंयोजी बंधनों (two-electron covalent bonds) की तुलना में कमज़ोर होंगे।

मुझे उपरोक्त पर्चा खोजकर 1931 में लायनस पॉलिंग द्वारा दिए गए सुझाव को फिर से पढ़ने का मन कर रहा है। आखिर ऐसे कौन से अवलोकन थे जिसके कारण पॉलिंग के मन में यह विचार आया। मैं इस कोशिश में आगे बढ़ रही हूं। अगर आपको इस विषयवस्तु से सम्बंधित कुछ पाठ्य सामग्री मिले तो मुझे ज़रूर भेजिए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://images.nature.com/lw1200/magazine-assets/d41586-024-03138-2/d41586-024-03138-2_27695570.jpg

प्रोटीन की त्रि-आयामी संरचना के लिए नोबेल

चक्रेश जैन

साल 2024 का रसायन नोबेल पुरस्कार (Nobel Prize) डेविड बेकर, डेमिस हस्साबिस और जॉन जम्पर को संयुक्त रूप से दिया गया है। तीनों वैज्ञानिकों ने प्रोटीन की संरचना (Protein Structure) अथवा बनावट समझने और पूर्वानुमान के लिए कंप्यूटर टूल्स (Computer Tools) और कृत्रिम बुद्धि (Artificial Intelligence – AI) तकनीकों का उपयोग किया है। 

गूगल डीप माइंड (Google DeepMind) के डेमिस हस्साबिस और जॉन जम्पर ने एआई मॉडल अल्फाफोल्ड (AlphaFold AI Model) के विकास में उल्लेखनीय योगदान किया है, जिसकी सहायता से प्रोटीन की त्रि-आयामी संरचना (3D Protein Structure) की भविष्यवाणी की जा सकती है। पुरस्कार की आधी राशि इन दोनों वैज्ञानिक को दी जाएगी। पुरस्कार की शेष आधी राशि डेविड बेकर को मिलेगी। बेकर ने कंप्यूटेशनल रिसर्च (Computational Research) के ज़रिए बिलकुल नए प्रकार के प्रोटीन डिज़ाइन किए हैं। इनका उपयोग टीकों (Vaccines), नैनो पदार्थ (Nanomaterials), सूक्ष्म संवेदकों और औषधियों (Drugs) में संभव है। 

1976 में जन्मे हस्साबिस ने युनिवर्सिटी कॉलेज लंदन से पीएचडी की उपाधि प्राप्त की है। उन्हें अल्फाफोल्ड मॉडल पर शोध के लिए ‘ब्रेकथ्रू’ पुरस्कार (Breakthrough Prize) सहित अनेक प्रतिष्ठित पुरस्कार मिल चुके हैं। 

1985 में जन्मे जॉन जम्पर ने 2017 में शिकागो युनिवर्सिटी से पीएचडी की उपाधि प्राप्त की है। उन्हें विज्ञान जगत की प्रतिष्ठित पत्रिका *नेचर* ने साल 2021 में टॉप टेन व्यक्तियों की सूची में सम्मिलित किया था। 

डेमिस हस्साबिस और जॉन जम्पर दोनों ही लंदन स्थित एक ही कंपनी गूगल डीप माइंड से जुड़े हुए हैं। 

डेविड बेकर को पुरस्कार नए प्रोटीन (New Protein Design) के निर्माण की असंभव लगने वाली उपलब्धि के लिए दिया गया है। डेमिस हस्साबिस और जॉन जम्पर को अल्फाफोल्ड नाम के एआई मॉडल (AI Model for Protein Structure) का विकास और उसका उपयोग करके प्रोटीन की जटिल संरचनाओं की भविष्यवाणी करने की आधी सदी पुरानी समस्या के समाधान के लिए दिया गया है। 

किसी प्रोटीन की त्रि-आयामी संरचना को निर्धारित करने के जटिल व लंबी अवधि तक चलने वाले प्रयोगों की आवश्यकता होती थी। प्रोटीन का कार्य उसकी त्रि-आयामी रचना से ही निर्धारित होता है। 

प्रोटीन दरअसल अमीनो अम्लों (Amino Acids) की एक लंबी शृंखला से बने होते हैं। पहला काम होता है किसी प्रोटीन में इन अमीनो अम्लों का अनुक्रम (Amino Acid Sequence) पता करना। किसी प्रोटीन में अमीनो अम्ल के अनुक्रम के बारे में जान जाने के बाद भी वह शृंखला विभिन्न ढंग से तह होकर कई आकृतियां ग्रहण कर सकती है। प्रोटीन की इस तह की हुई त्रि-आयामी संरचना का निर्धारण अत्यधिक चुनौतीपूर्ण होता है।

मिसाल के तौर पर अगर किसी प्रोटीन में केवल 100 अमीनो अम्ल हों, तो वह कम-से-कम 1047 विभिन्न त्रि-आयामी संरचनाएं ग्रहण कर सकता है। कुछ वर्षों पहले तक मनुष्यों में पाए जाने वाले करीब 20,000 प्रोटीनों में से केवल एक-तिहाई की संरचना ही प्रयोगशाला के स्तर पर आंशिक रूप से निर्धारित की गई थी।

अल्फाफोल्ड (AlphaFold) ने अब तक लगभग दस लाख प्रजातियों में लगभग 20 करोड़ प्रोटीन (Proteins) की त्रि-आयामी संरचनाओं की भविष्यवाणी की है। 

2018 में हस्साबिस और जम्पर ने प्रोटीन संरचना के पूर्वानुमान में 60 प्रतिशत की सटीकता प्राप्त कर ली थी। सन 2020 में एआई मॉडल के प्रदर्शन की तुलना एक्स-रे क्रिस्टेलोग्रॉफी (X-Ray Crystallography) से की गई थी। एक्स-रे क्रिस्टेलोग्राफी प्रोटीन संरचना पता करने की एक और विधि है। हालांकि यह एआई मॉडल अभी भी पूरी तरह मुकम्मल नहीं है, परन्तु यह इस बात का अनुमान लगाता है कि जो संरचना प्रस्तावित की गई है, वह कितनी सही है। 

वर्ष 2021 से अल्फाफोल्ड मॉडल का कोड (AlphaFold Code) सार्वजनिक तौर पर उपलब्ध है। इस एआई उपकरण का उपयोग 190 देशों के बीस लाख से अधिक शोधकर्ताओं द्वारा किया गया है। 

बेकर ने अमीनो अम्ल के अनुक्रमों के आधार पर प्रोटीन की संरचना की भविष्यवाणी करने की बजाय नई प्रोटीन संरचनाओं (New Protein Structures) का सृजन किया। उन्होंने अपने कंप्यूटर सॉफ्टवेयर रोसेटा (Rosetta Software) का उपयोग ऐसे नए प्रोटीनों का निर्माण करने के लिए किया, जो प्रकृति में नहीं पाए जाते। बेकर ने ज्ञात प्रोटीन संरचनाओं के डैटाबेस की खोज और समानता वाले प्रोटीनों के छोटे टुकड़ों की तलाश करके अमीनो अम्ल का अनुक्रम निर्धारित करने में रोसेटा का उपयोग किया है। 

प्रोटीन सजीवों में होने वाली सभी प्रकार की रासायनिक अभिक्रियाओं को नियंत्रित और संचालित करते हैं। प्रोटीन अणु, हारमोन्स (Hormones), एंटीबॉडीज़ (Antibodies) और विभिन्न ऊतकों में बिल्डिंग ब्लॉक (Building Blocks) की भूमिका भी निभाते हैं। प्रोटीन आकृति में फीते की तरह होते हैं और अमीनो अम्लों की लंबी शृंखला से बने होते हैं। सामान्य तौर पर प्रोटीन 20 अलग-अलग प्रकार के अमीनो अम्लों से बनते हैं। प्रोटीन की लंबी शृंखला को तह करके त्रि-आयामी संरचना बनाई जा सकती है।   

सन् 1970 से वैज्ञानिक प्रोटीन की त्रि-आयामी संरचना (3D Protein Structure) की भविष्यवाणी पर अनुसंधान कर रहे हैं। इस विषय पर शोधकार्य की रफ्तार बेहद धीमी रही है। लेकिन साल 2020 में अनुसंधानकर्ताओं को बड़ी सफलता मिली जब प्रोफेसर हस्साबिस और जॉन जम्पर ने कृत्रिम बुद्धि (AI) की सहायता से अल्फाफोल्ड-2 (AlphaFold-2) के विकास की घोषणा की थी। प्रोफेसर जॉन जम्पर ने संवाददाताओं के सवालों का उत्तर देते हुए बताया कि डीप लर्निंग मॉडल (Deep Learning Model) ने जीव विज्ञान की जटिलताओं के समाधान में सही डैटा (Data) उपलब्ध कराया है। उन्होंने बताया कि अल्फाफोल्ड-2 का विभिन्न तरह से उपयोग किया गया है। इनमें बीमारियों के हमले से मुकाबला करने की क्षमता और प्लास्टिक के विघटन में भूमिका निभाने वाले एंजाइम (Enzymes) शामिल हैं। 

हस्साबिस का कहना है कि अल्फाफोल्ड मॉडल की खोज को एआई की विपुल संभावनाओं (AI Potential) के प्रमाण के तौर पर देखना चाहिए। इससे न केवल वैज्ञानिक अनुसंधान की रफ्तार तेज़ होगी, बल्कि समाज को भी लाभ मिलेगा। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.hindustantimes.com/ht-img/img/2024/10/09/1600×900/Nobel_Prize_in_Chemistry_2024_1728467654120_1728467681716.jpg

रसायन शास्त्र का नोबेल: दिलचस्प और उपयोगी खोज

र्ष 2023 का रसायन नोबेल पुरस्कार संयुक्त रूप से तीन वैज्ञानिकों को दिया गया है – एलेक्साई एकिमोव (पूर्व सोवियत संघ), लुई ब्रुस (यूएस) और मौंगी बावेंडी (यूएस)। इन तीनों ने मिलकर एक ऐसे प्रभाव की खोज की है जिसने इलेक्ट्रॉनिक्स व संचार के क्षेत्र में क्रांति ला दी है। लोग इसके उपयोग से तो परिचित हैं लेकिन इसके चौंकाने वाले वैज्ञानिक धरातल से अपरिचित हैं।

इस वर्ष के रसायन नोबेल का कथानक क्वांटम यांत्रिकी से जुड़ा है। जहां एकिमोव और ब्रुस ने इस प्रभाव का अवलोकन करके इसे पहचाना, वहीं बावेंडी का प्रमुख योगदान इसे उत्पन्न करने की विधियों पर केंद्रित रहा।

यह प्रभाव साइज़ के अनुसार पदार्थों के बदलते गुणधर्मों को दर्शाता है। खास तौर से नैनो साइज़ पर यह प्रभाव बढ़-चढ़कर नज़र आने लगता है। तीनों शोधकर्ताओं ने इस बात की खोज की है कि जब हम मिलीमीटर के लाखवें-करोड़वें साइज़ के कणों के साथ काम करते हैं तो विचित्र घटनाएं होने लगती है। ऐसे कणों को क्वांटम बिंदु कहते हैं।

दरअसल, इस तरह के विचित्र प्रभाव की भविष्यवाणी काफी पहले 1930 के दशक में हरबर्ट फ्रोलिश नामक भौतिक शास्त्री कर चुके थे। फ्रोलिश ने क्वांटम यांत्रिकी की मशहूर श्रॉडिंजर समीकरण के सैद्धांतिक निहितार्थ की पड़ताल करते हुए दर्शाया था कि जब कण अत्यंत छोटे हो जाएंगे तो उनमें इलेक्ट्रॉन के लिए कम जगह रह जाएगी। परिणाम यह होगा कि इलेक्ट्रॉन (जो क्वांटम यांत्रिकी के अनुसार कण भी होते हैं और तरंगें भी) पास-पास ठस जाएंगे। फ्रोलिश का मत था कि इसका पदार्थ के गुणधर्मों पर बहुत ज़्यादा असर होगा। इसे क्वांटम प्रभाव कहते हैं जो बहुत कम साइज़ों पर नज़र आता है।

भविष्यवाणी दिलचस्प थी और वैज्ञानिक गण इसे यथार्थ में साकार करने के प्रयासों में जुट गए हालांकि बहुत कम वैज्ञानिकों को लगता था कि इस क्वांटम प्रभाव का कोई व्यावहारिक उपयोग होगा।

खैर, 1970 के दशक में शोधकर्ता इस तरह की नैनो-संरचना बनाने में कामयाब हो गए। उन्होंने एक आणविक पुंज का उपयोग करते हुए एक मोटी सतह के ऊपर एक अत्यंत महीन (नैनो मोटी) परत बना दी। और इसके ज़रिए वे यह दिखा पाए कि इस महीन परत के प्रकाशीय गुणधर्म इसकी मोटाई के अनुसार बदलते हैं – यह प्रयोग क्वांटम यांत्रिकी की भविष्यवाणी से मेल खाता था। प्रायोगिक तौर पर क्वांटम प्रभाव को दर्शाना एक बड़ी बात थी लेकिन इस व्यवस्था को बनाने के लिए लगभग परम शून्य तापमान और अत्यंत गहन निर्वात की ज़रूरत थी।

इस प्रभाव को ज़्यादा साधारण अवस्था में देखने में मदद एक अनपेक्षित दिशा से मिली। रंगीन कांच बनाने की कला ने इस क्वांटम असर के अध्ययन में बहुत मदद की। प्राचीन समय से ही कारीगर लोग विभिन्न रंगों के कांच बनाते आए थे। वे कांच बनाते समय उसमें चांदी, सोना, कैडमियम जैसे पदार्थ मिलाते थे और फिर उसे अलग-अलग तापमान पर तपाकर विभिन्न रंग पैदा कर लेते थे।

भौतिक शास्त्रियों के लिए रंगीन कांच महत्वपूर्ण साधन साबित हुए थे। इनकी मदद से वे प्रकाश में से कुछ रंगों को (यानी कुछ तरंग दैर्घ्यों को) छानकर अलग कर सकते थे। इसके चलते शोधकर्ता खुद रंगीन कांच बनाने लगे। ऐसा करते हुए उन्होंने देखा कि एक ही पदार्थ मिलाने पर कांच में कई अलग-अलग रंग पैदा किए जा सकते हैं। उदाहरण के लिए, कैडमियम सेलेनाइड और कैडमियम सल्फाइड का मिश्रण कांच में मिलाया जाए, तो वह पीला बन सकता है या लाल भी बन सकता है। यह इस बात पर निर्भर करता है कि पिघले कांच को कितना तपाया गया था और किस तरह ठंडा किया गया था। है ना आश्चर्य की बात? शोधकर्ता यह भी दर्शा पाए कि कांच में रंग उसके अंदर बनने वाले कणों से पैदा होता है और कणों की साइज़ पर निर्भर करता है।

इस वर्ष के एक नोबल विजेता, एलेक्साई एकिमोव, ने इसी बात को आगे बढ़ाया। उन्हें यह बात थोड़ी बेतुकी लगी कि एक ही पदार्थ कांच में अलग-अलग रंग पैदा कर सकता है। लेकिन खुशकिस्मती से एकिमोव प्रकाशीय अध्ययनों से वाकिफ थे। लिहाज़ा, 1970 दशक में उन्होंने इनकी मदद से रंगीन कांचों की तहकीकात शुरू कर दी। उन्होंने व्यवस्थित रूप से कॉपर क्लोराइड से रंजित कांचों का निर्माण किया और पिघले हुए कांच को 500 से 700 डिग्री सेल्सियस पर अलग-अलग अवधियों (1 से लेकर 96 घंटे) तक तपाया। एक्सरे विश्लेषण से पता चला कि निर्माण की प्रक्रिया का असर कॉपर क्लोराइड के कणों की साइज़ पर हुआ था – कुछ नमूनों में ये कण मात्र 2 नैनोमीटर के थे जबकि कुछ नमूनों में इनकी साइज़ 30 नैनोमीटर तक थी।

सबसे दिलचस्प बात यह रही कि इन कणों की साइज़ का असर कांच द्वारा सोखे गए प्रकाश पर पड़ रहा था – बड़े कण तो प्रकाश को उसी तरह सोख रहे थे जैसे कॉपर क्लोराइड सामान्यत: सोखता है लेकिन कण की साइज़ जितनी कम होती थी, वे उतना ही अधिक नीला प्रकाश सोखते थे।

भौतिक शास्त्री होने के नाते एकिमोव क्वांटम यांत्रिकी के नियमों से परिचित थे और फौरन समझ गए कि वे जिस चीज़ का अवलोकन कर रहे हैं, वह साइज़-आधारित क्वांटम प्रभाव है। यह पहली बार था कि किसी ने जानबूझकर क्वांटम बिंदु निर्मित किए थे। क्वांटम बिंदु यानी ऐसे नैनो-कण जो साइज़-आधारित प्रभाव उत्पन्न करें।

दिक्कत यह हुई कि एकिमोव ने अपनी खोज के परिणाम एक सोवियत शोध पत्रिका में प्रकाशित किए। शीत युद्ध के दौर में सोवियत संघ से बाहर इस शोध पत्र पर किसी का ध्यान ही नहीं गया।

सो, इस वर्ष के दूसरे नोबेल विजेता लुई ब्रुस ने 1983 में यह खोज दोबारा की। दरअसल, ब्रुस तो कोशिश कर रहे थे कि सौर ऊर्जा की मदद से रासायनिक क्रियाओं को गति दे सकें। उन्होंने कैडमियम सल्फाइड के अत्यंत छोटे कण एक घोल में बनाए। छोटे कण बनाने का मकसद था कि उनकी सतह का क्षेत्रफल अधिकतम रहे। लेकिन ऐसा करते हुए ब्रुस ने एक अजीब-सा अवलोकन किया – जब वे इन कणों को प्रयोगशाला की बेंच पर कुछ समय के लिए छोड़ देते थे, तो उनके गुणधर्म बदल जाते थे। उन्होंने अनुमान लगाया कि शायद ऐसा इसलिए हो रहा होगा क्योंकि रखे-रखे वे कण बड़े हो जाते होंगे। अपने अनुमान की पुष्टि के लिए उन्होंने कैडमियम सल्फाइड के लगभग 4.5 नैनोमीटर के कण बनाए और इनके प्रकाशीय गुणधर्मों की तुलना 12.5 नैनोमीटर के कणों से की। निष्कर्ष यह निकला कि बड़े कण तो उसी तरंग दैर्घ्य का प्रकाश अवशोषित करते हैं जो कैडमियम सल्फाइड सामान्य रूप से करता है लेकिन छोटे कणों के मामले में अवशोषण थोड़ा नीले रंग की ओर सरक जाता है। ब्रुस भी समझ गए कि उन्होंने साइज़-आधारित क्वांटम प्रभाव का अवलोकन किया है। 1983 में अपने परिणाम प्रकाशित करने के बाद उन्होंने कई पदार्थों के साथ प्रयोग करके पाया कि जितने छोटे कण होते हैं, अवशोषण नीली तरंग दैर्घ्यों की ओर खिसकता जाता है।

अब सवाल उठता है कि इससे क्या फर्क पड़ता है। जवाब है कि यदि एक ही पदार्थ के कणों की साइज़ बदलने से उसका प्रकाश अवशोषण बदल जाता है, तो इसका मतलब हुआ कि उसमें कुछ तो बुनियादी रूप से बदल गया है। किसी भी पदार्थ के प्रकाशीय गुण उसके इलेक्ट्रॉन पर निर्भर करते हैं और उसके रासायनिक गुण भी। यानी किसी पदार्थ के रासायनिक गुण सिर्फ इलेक्ट्रॉन कक्षकों की संख्या और सबसे बाहरी कक्षा में इलेक्ट्रॉनों की संख्या से तय नहीं होते बल्कि नैनो पैमाने पर साइज़ पर भी निर्भर करते हैं।

धीरे-धीरे स्पष्ट होता गया कि क्वांटम बिंदु के कई व्यावहारिक उपयोग हैं। ये आज क्वांटम बिंदु नैनो-टेक्नॉलॉजी का एक महत्वपूर्ण औज़ार हैं और तमाम उत्पादों में नज़र आते हैं। इनका सबसे अधिक उपयोग रंगीन प्रकाश पैदा करने में किया गया है। यदि क्वांटम बिंदुओं पर नीला प्रकाश डाला जाए तो ये उसे सोख लेते हैं और किसी अन्य रंग का प्रकाश छोड़ते हैं। उत्सर्जित प्रकाश का रंग क्वांटम बिंदु की साइज़ पर निर्भर करता है। इस तरह नीले प्रकाश को अलग-अलग रंगों में बदलकर तीन प्राथमिक रंग (नीला, लाल और हरा) बनाए जा सकते हैं। इनकी मदद से एलईडी लैम्प के प्रकाश का रंग व तीव्रता भी नियंत्रित किए जा सकते हैं।

क्वांटम बिंदुओं का उपयोग जैव-रसायन और चिकित्सा में भी किया जा सकता है। जैसे क्वांटम बिंदुओं को जैविक अणुओं से जोड़कर कोशिकाओं तथा अंगों का अध्ययन किया जा सकता है। और तो और, शरीर में ट्यूमर ऊतकों पर नज़र रखने में भी क्वांटम बिंदुओं के उपयोग पर काम शुरू हुआ है। माना जा रहा है कि भविष्य में इलेक्ट्रॉनिक्स के क्षेत्र में ये निहायत उपयोगी साबित होने जा रहे हैं।

अलबत्ता सही मनचाही साइज़ के क्वांटम बिंदु बनाना टेढ़ी खीर थी। जब तक उम्दा गुणवत्ता के क्वांटम बिंदु बनाने का कोई आसान तरीका सामने नहीं आता तब तक इनका उपयोग करना असंभव था। और यहीं तीसरे नोबेल विजेता मौंगी बावेंडी के योगदान को सम्मान दिया गया है। उन्होंने वह टेक्नॉलॉजी विकसित जिसकी मदद से नियंत्रित ढंग से क्वांटम बिंदुओं का निर्माण करना संभव हुआ। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.hindustantimes.com/ht-img/img/2023/10/04/1600×900/F7liNMtWcAAhdPQ_1696413255598_1696413331095.jpg

रसायन विज्ञान शिक्षा में बदलाव ज़रूरी

दियों से रसायनज्ञ प्रकृति प्रदत्त चीज़ों से लाभदायक उत्पाद बनाते आए हैं। दूसरी ओर, कार्बन उत्सर्जन और प्लास्टिक प्रदूषण से उपजा पर्यावरण संकट भी रसायन विज्ञान की ही देन है। अब ज़रूरत है कि रसायनज्ञ इन समस्याओं से निपटने के लिए अपने काम करने के तरीकों में बदलाव करें। साथ ही रसायन विज्ञान के शिक्षण के तरीकों में भी बदलाव की ज़रूरत है ताकि पर्यावरण अनुकूल तरीकों से काम करने  का माहौल बने। यह किया तो जा रहा है, लेकिन पर्याप्त तेज़ी से नहीं।

हाल ही में दक्षिण कोरिया के उल्सान इंस्टीट्यूट ऑफ साइंस एंड टेक्नॉलॉजी के रसायनज्ञ बार्टोज़ ग्रिज़ीबोव्स्की और उनके साथियों ने नेचर पत्रिका में एक ऐसे ही प्रयास का वर्णन किया है। इसमें उन्होंने अपशिष्ट पदार्थों से उपयोगी उत्पाद बनाने के लिए कृत्रिम बुद्धि का उपयोग किया है। इस प्रयास के तहत कृत्रिम बुद्धि को औषधि निर्माण और कृषि में प्रयुक्त लगभग 300 ज्ञात रसायनों की अभिक्रिया का प्रशिक्षण दिया गया। यह काम हरित रसायन विज्ञान (ग्रीन केमिस्ट्री) अभियान का नवीनतम योगदान है।

1990 के दशक में शुरू हुए हरित रसायन विज्ञान अभियान में पर्यावरण अनुकूल तरीकों पर ज़ोर है। जैसे अभिक्रिया करवाने में पर्यावरण-स्नेही विलायकों का उपयोग, अभिक्रियाओं को कम ऊर्जा से करवाने के तरीके खोजना वगैरह। तब से काफी प्रगति हुई है। उदाहरण के तौर पर, प्लास्टिक पुर्नचक्रण (रीसायक्लिंग) के तरीकों में काफी सुधार हुआ है और ऐसे उत्प्रेरक विकसित किए गए हैं जो विघटित न होने वाले पदार्थों को भी छोटे उपयोगी अणुओं में तोड़ सकते हैं। प्लास्टिक प्रदूषण को खत्म करने के लिए अंतर्राष्ट्रीय संधि पर वार्ता के चलते इन प्रयासों को और बढ़ावा मिलने की उम्मीद है।

लेकिन इस तरह के प्रयासों और अनुसंधानों में तेज़ी लाने के लिए स्कूलों और विश्वविद्यालयों के स्तर पर रसायन विज्ञान की शिक्षा में बदलाव करने की आवश्यकता है ताकि छात्र यह सीख सकें कि किस तरह दवाइयों और उर्वरक जैसे रसायन सुरक्षित और टिकाऊ ढंग से बनाए जाएं।

वैसे कुछ विश्वविद्यालयों ने अपने स्नातकोत्तर पाठ्यक्रमों में पर्यावरण हितैषी, हरित या टिकाऊ रसायन विज्ञान शामिल किया है। और स्कूलों और स्नातक स्तर के रसायन विज्ञान पाठ्यक्रमों में जलवायु परिवर्तन का रसायन विज्ञान, और रसायन विज्ञान का स्वास्थ्य, पर्यावरण और समाज पर प्रभाव जैसे विषय शामिल किए जा रहे हैं। लेकिन विद्यार्थियों को ऐसे पर्यावरण हितैषी उत्पाद विकसित करने के लिए ज्ञान और कौशल से लैस करना एक बड़ी चुनौती है। कई देशों के स्कूलों में आज भी दशकों पुराने पाठ्यक्रम चल रहे हैं।

रसायन विज्ञान शिक्षा पर अध्ययन करने वाले शोधकर्ता इस बात की वकालत करते हैं कि इसका पाठ्यक्रम समेकित दृष्टिकोण पर आधारित होना चाहिए जो विद्यार्थियों को रासायनिक यौगिकों या घटक तत्वों के परस्पर सम्बंध भी सिखाए और रसायन विज्ञान के व्यापक प्रभावों को मापना भी सिखाए। जैसे अर्थव्यवस्था और समाज पर, पर्यावरण और मानव स्वास्थ्य पर रसायन विज्ञान के विविध प्रभाव।

रसायन शास्त्र पाठ्यक्रम के कुछ केंद्रीय हिस्सों पर पुनर्विचार की भी ज़रूरत है। उदाहरण के लिए कार्बनिक रसायन विज्ञान। जर्नल ऑफ केमिकल एजुकेशन में प्रकाशित एक शोध पत्र में बताया गया है कि वर्तमान कार्बनिक रसायन विज्ञान पाठ्यक्रम मुख्यत: जीवाश्म स्रोतों से कार्बन यौगिकों के रूपांतरण पर केंद्रित है। ऐसे कई यौगिकों को रीसायकल करना और उनका पुन: उपयोग करना मुश्किल होता है। इसके अलावा, इसमें उपयोग किए जाने वाले अभिकर्मक खतरनाक हो सकते हैं। शोध पत्र में सुझाव दिया गया है कि विद्यार्थियों को सजीवों द्वारा उत्पादित यौगिकों के रसायन विज्ञान (जैव रसायन) का अध्ययन करना चाहिए। साथ ही ऐसे यौगिकों के बारे में पढ़ाया जाना चाहिए जिन्हें रीसायकल करना आसान हो। ऐसा करने से विद्यार्थी ऐसे उत्पाद बनाने के लिए तैयार होंगे जो जैव-विघटनशील हों, या जिन्हें आसानी से छोटे, पुन:उपयोग करने लायक अणुओं में तोड़ा जा सके। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://korsteco.com/wp-content/uploads/2022/04/d41586-022-01109-z_20341154.jpg

रासायनिक आबंध की मज़बूती

पाठ्य पुस्तकें बताती आई हैं कि रासायनिक बंधनों की मज़बूती उन्हें बनाने वाले परमाणुओं के बीच विद्युत-ऋणात्मकता पर निर्भर करती है – दो तत्वों के परमाणुओं के बीच विद्युत-ऋणात्मकता में अंतर जितना अधिक होगा उनके बीच रासायनिक बंधन उतना मज़बूत होगा। लेकिन हाल ही में वैज्ञानिकों ने पाया है कि कुछ मामलों में परमाणु के आकार में अंतर भी बंधन की मज़बूती का निर्धारण करता है।

रैडबौड युनिवर्सिटी और व्रीजे युनिवर्सिटी के मैथियास बिकेलहॉप्ट बताते हैं कि विद्युत-ऋणात्मकता मॉडल का सबसे अनूठा अपवाद है कार्बन-हैलोजन बंधनों की शृंखला, जबकि इन्हीं बंधनों के आधार पर विद्युत-ऋणात्मकता मॉडल की व्याख्या की जाती है।

शोधकर्ताओं ने डेंसिटी फंक्शनल थ्योरी का उपयोग करते हुए आवर्त सारणी के आवर्त 2 और 3 और समूह 14 से 17 के तत्वों के बीच रासायनिक बंधनों का विश्लेषण किया। ये बंधन रसायनों में आम तौर पर पाए जाते हैं।

शोधकर्ताओं ने देखा कि दो परमाणुओं को पास लाने पर उनके बीच की बंधन ऊर्जा किस तरह बदलती है। इलेक्ट्रॉन और नाभिक जब एक-दूसरे के नज़दीक आते हैं तो वहां हो रहे ऊर्जा परिवर्तन के कई घटक होते हैं। शोधकर्ताओं ने विश्लेषण करके देखा कि आबंध ऊर्जा में अलग-अलग अवयवों के तुलनात्मक प्रभाव क्या हैं। इससे उन्हें यह जानने में मदद मिली कि आवर्त और समूहों के हिसाब से ये अवयव और प्रभाव कैसे बदलते हैं।

शोधकर्ताओं ने देखा कि किसी आवर्त में आगे बढ़ने पर, उदाहरण के लिए कार्बन-कार्बन बंध से लेकर कार्बन-फ्लोरीन बंध तक, तत्वों के बीच विद्युत-ऋणात्मकता का अंतर बढ़ने पर आबंध मजबूत होते जाते हैं। लेकिन सारणी में समूह में ऊपर से नीचे जाने पर, उदाहरण के लिए कार्बन-फ्लोरीन से लेकर कार्बन-आयोडीन तक, परमाणु आकार का बढ़ने से आबंध कमज़ोर पड़ने लगते हैं।

किसी अणु की संरचना और अभिक्रियाशीलता रासायनिक आबंधों की स्थिरता और लंबाई पर निर्भर करती है। इसलिए यह समझना महत्वपूर्ण है कि आवर्त सारणी में भिन्न-भिन्न तत्वों के बीच संयोजनों के लिए ये मापदंड कैसे बदलते हैं। इससे वैज्ञानिकों को नए अणु, जैसे औषधीय यौगिकों और अन्य कामकाजी पदार्थों, के उत्पादन के लिए बेहतर तरीके विकसित करने में मदद मिल सकती है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://d2cbg94ubxgsnp.cloudfront.net/Pictures/780xany/9/9/3/516993_chem.2021035442f_877093.jpg

नोबेल पुरस्कार: रसायन शास्त्र

रसायन शास्त्रियों का एक काम है कि वे विभिन्न पदार्थों से शुरू करके नए-नए पदार्थों का निर्माण करें। ये नए पदार्थ उर्वरक हो सकते हैं, सौर ऊर्जा को विद्युत ऊर्जा में बदलने वाले हो सकते हैं, ऊर्जा का भंडारण करने वाले हो सकते हैं या प्लास्टिक जैसी निर्माण व पैकेजिंग सामग्री में उपयोगी हो सकते हैं। उन्नीसवीं सदी में रसायनज्ञ जैकब बर्ज़ीलियस ने पहचान लिया था कि कुछ पदार्थ रासायनिक क्रियाओं को गति दे सकते हैं जबकि वे न तो क्रियाकारी होते हैं और न क्रियाफल। इन्हें उत्प्रेरक कहते हैं। एक अनुमान है कि विश्व के जीडीपी का 35 प्रतिशत उत्प्रेरकों के दम पर है।

इस वर्ष के नोबेल विजेता बेंजामिन लिस्ट और डेविड मैकमिलन के काम से पहले हम दो ही किस्म के उत्प्रेरक जानते थे। इनमें से एक थे जिनका उपयोग प्रकृति करती है (एंज़ाइम) और दूसरे थे धातु-आधारित। लिस्ट और मैकमिलन के शोध कार्य के फलस्वरूप हमें एक सर्वथा नवीन किस्म के उत्प्रेरक मिले हैं जिन्हें ऑर्गेनोउत्प्रेरक कहा जाता है और इस प्रक्रिया को ऑर्गेनोउत्प्रेरण कहते हैं।

दोनों शोधकर्ताओं ने प्रकृति के उत्प्रेरकों यानी एंज़ाइम्स पर ध्यान दिया। एंज़ाइम्स विशाल प्रोटीन अणु होते हैं जो किसी क्रिया के संचालन में मदद करते हैं। शोधकर्ताओं ने देखा कि पूरे विशाल प्रोटीन अणु में से मात्र कुछ हिस्सा ही क्रिया को संचालित करता है, शेष एंज़ाइम तो उस हिस्से को सही स्थिति में रखने के काम आता है। प्रोटीन दरअसल अमीनो अम्ल की इकाइयों से बने पॉलीमर हैं। तो शोधकर्ताओं ने सोचा कि क्या मात्र सम्बंधित अमीनो अम्ल वही काम कर सकता है जो पूरा एंज़ाइम अणु करता है।

इसी में से कार्बनिक उत्प्रेरण का विचार उभरा। प्रयोग करते-करते लिस्ट ने पाया कि वास्तव में अमीनो अम्ल उत्प्रेरण का काम कर सकते हैं, भले ही वे किसी एंज़ाइम का हिस्सा न हों। और तो और, ऐसे अमीनो अम्ल असममित संश्लेषण भी कर सकते हैं। गौरतलब है कि कई कार्बनिक अणु, रासायनिक संरचना में एक-से होते हुए भी, दो रूपों में पाए जाते हैं और ये दो रूप एक दूसरे के प्रतिबिंब होते हैं। प्राय: ऐसा होता है कि इनमें से एक आगे की क्रियाओं में उपयोगी होता है। लिस्ट ने पाया कि ऑर्गेनोउत्प्रेरक मनचाहा रूप बनाने में मदद कर सकते हैं।

लगभग इसी समय कैलिफोर्निया विश्वविद्यालय में डेविड मैकमिलन भी असममित संश्लेषण के लिए धातु उत्प्रेरकों के विकल्प की तलाश में थे। धातु उत्प्ररेकों के साथ समस्या यह होती है कि उन्हें काम करने के लिए अत्यंत नियंत्रित वातावरण की ज़रूरत होती है। और ये महंगी भी होती हैं। मैकमिलन का रास्ता एंज़ाइम से शुरू नहीं हुआ था, उन्होंने तो ऐसे कार्बनिक अणुओं से शुरुआत की थी जो उत्प्रेरण का काम कर सकें। देर सबेर वे भी वहीं पहुंच गए।

तो उपरोक्त शोधकर्ताओं के प्रयासों ने न सिर्फ हमें नए उत्प्रेरक दिए, बल्कि उत्प्रेरण के क्षेत्र को एक नई दिशा भी दी। उनके कार्य के बाद इस क्षेत्र में तेज़ी से प्रगति हुई है। असममित संश्लेषण के अलावा इन्होंने एक और चीज़ को संभव बनाया। जब कोई एंज़ाइम कोशिका में काम करता है तो अगला एंज़ाइम उसके क्रियाफलों का उपयोग सीधे ही क्रियाकारकों के रूप में कर लेता है। यानी उन क्रियाफलों को पृथक करके नए सिरे से उपयोग नहीं करना पड़ता। ऑर्गोनोउत्प्रेरण की इस खोज के बाद प्रयोगशाला और उद्योंगों में कृत्रिम रूप से भी ऐसा क्रमिक निरंतर उत्पादन (एसेंबली लाइन उत्पादन) संभव हो गया है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.nobelprize.org/all-nobel-prizes-2021/

कोरोना की चुनौतियों से जूझता विज्ञान जगत – चक्रेश जैन

विदा हो चुके वर्ष 2020 में कोविड-19 की विप्लवकारी चुनौतियों से वैज्ञानिक बिरादरी में चिंता व्याप्त रही। साल के पूर्वार्द्ध में दुनिया भर की सरकारों ने वैक्सीन के अभाव में ज़ोरदार जागरूकता अभियान चलाए, जिनके परिणामस्वरूप लाखों जाने बचीं। उत्तरार्द्ध में वैज्ञानिकों को वैक्सीन बनाने में मिली सफलता से लोगों ने राहत की सांस ली।

कोविड-19 महामारी का असर आर्थिक,सामाजिक,वैज्ञानिक,शैक्षणिक और सांस्कृतिक गतिविधियों पर पड़ा और अधिकांश आयोजन रियल से वर्चुअल प्लेटफार्म पर शिफ्ट हो गए। विज्ञान प्रयोगशालाओं में शोध कार्यों और परियोजनाओं में रुकावट आ गई। विज्ञान सम्मेलनों, बैठकों और संगोष्ठियों की जगह वेबिनारों का दौर शुरू हो गया।

वर्ष 2020 विज्ञान जगत के इतिहास में कोरोनावायरस परिवार के सातवें सदस्य सार्स-कोव-2 की विनाशकारी सक्रियता के लिए याद रहेगा। अभी तक कोरोना वायरस परिवार में छह सदस्य (229 ई, एनएल 63, ओसी 43, एचकेयू1, सार्स-कोव और मर्स-कोव) थे।

साल अंत होते-होते ब्रिटेन में इसी वायरस का एक नया रूप (स्ट्रेन) सामने आ गया। बीते वर्ष कोविड-19 पर रिसर्च पेपर्स की बाढ़ आ गई और इसकी चुनौतियों से जूझने के लिए नवाचारों का विस्तार भी हुआ।

विज्ञान की प्रतिष्ठित अंतर्राष्ट्रीय पत्रिका साइंस द्वारा वर्ष 2020 की टॉप टेन रिसर्च स्टोरीज़ में प्रथम स्थान कोरोनावायरस के विरुद्ध वैक्सीन की खोज और अनुसंधान कार्यों को मिला है। कोरोना परिवार का नया वायरस सार्स-कोव-2 अपने रिश्तेदारों की तुलना में कहीं अधिक संक्रामक साबित हुआ। यह वायरस चीन के वुहान प्रांत में संक्रमित लोगों के ज़रिए कई देशों में फैल गया। न्यूज़ीलैंड ने अपने देश में वायरस को नियंत्रित करके विश्व के सभी देशों को चकित कर दिया। न्यूज़ीलैंड की प्रधान मंत्री को इसके लिए नेचर ने 2020 के टॉप टेन व्यक्तियों की सूची में शामिल किया है। प्रथम स्थान विश्व स्वास्थ्य संगठन के महानिदेशक टेड्रोस एडहानोम गेब्रेयेसस को मिला है, जिन्होंने तत्परतापूर्वक इसे महामारी घोषित कर सरकारों को सचेत कर दिया।

मार्च में सबसे पहले लॉकडाउन का प्रस्ताव चीन की महामारी रोग विशेषज्ञ ली लंजुआन ने रखा था, जिसे चीन सहित कई देशों ने अपनाया। नेचर ने इस साल के दस विशिष्ट व्यक्तियों की सूची में ली लंजुआन को भी सम्मिलित किया है। इस सूची में नेचर ने चीनी वैज्ञानिक झांग योंग ज़ेन को भी स्थान दिया है जिनकी टीम ने सबसे पहले सार्स-कोव-2 का आरएनए अनुक्रम ऑनलाइन उपलब्ध कराया था।

गुज़रे साल कई देश सार्स-कोव-2 की वैक्सीन बनाने की स्पर्धा में शामिल रहे। आम तौर पर वैक्सीन विकसित करने में वर्षों लगते हैं और परीक्षण के तीन या चार चरणों से गुज़रना पड़ता है, लेकिन 11 अगस्त को ही रूस के राष्ट्रपति व्लादिमीर पुतिन ने पहली वैक्सीन तैयार करने की घोषणा की और पहला टीका उनकी पुत्री को लगाया गया।

इस वर्ष नीदरलैंड के कैंसर इंस्टीट्यूट के वैज्ञानिकों ने मनुष्य के गले के ऊपरी हिस्से में नई लार ग्रंथियां खोजीं जिन्हें नासा-ग्रसनी (ट्यूबेरियल) लार ग्रंथियां नाम दिया गया है। इस नए अंग का पता प्रोस्टेट ग्रंथि के कैंसर पर रिसर्च के दौरान चला। वैज्ञानिकों का दावा है कि यह खोज कैंसर की चिकित्सा में मददगार होगी।

इसी वर्ष इस्राइल की तेल अवीव युनिवर्सिटी के वैज्ञानिकों ने हेनेगुआ सालमिनिकोला परजीवी का पता लगाया, जिसमें माइटोकॉण्ड्रियल जीनोम नहीं मिला। यह पहला बहुकोशिकीय जीव है, जो पूरे जीवन ऑक्सीजन पर निर्भरता से मुक्त रहता है। इसे सांस लेने की आवश्यकता नहीं होती। अध्ययनों में यह भी पता चला कि इसका विकास माइटोकॉण्ड्रिया वाले जीवों की तरह हुआ था, लेकिन इसने धीरे-धीरे माइटोकॉण्ड्रिया गंवा दिया।

वैज्ञानिकों ने फास्ट रेडियो बर्स्ट (एफआरबी) का पता लगा कर बड़ी उपलब्धि हासिल की। दरअसल ये संकेत हमारी निहारिका (आकाशगंगा) के एक मैग्नेटर से आए थे। पहली बार 2007 में इन संकेतों को पकड़ा गया था, जो केवल कुछ मिलीसेकेंड तक ही दिखाई दिए थे। नेचर ने इसे टॉप टेन की सूची में सम्मिलित किया है।

वर्ष 2020 में नासा के सोफिया ने चंद्रमा की सतह पर मौजूद क्रेटर क्लेवियस में पानी के अणु की खोज की। क्लेवियस पृथ्वी से देखा जा सकने वाला गड्ढा है। यह चंद्रमा के दक्षिणी गोलार्द्ध पर स्थित है। यह खोज दर्शाती है कि पानी चन्द्रमा के सिर्फ छायादार स्थानों पर ही नहीं, कई स्थानों पर हो सकता है। अभी तक मान्यता थी कि चंद्रमा पर जल का तरल रूप नहीं है।

इस वर्ष जनवरी में विश्व के सबसे बड़े और शक्तिशाली सोलर टेलीस्कोप डेनियल के. इनोय की सहायता से असाधारण तस्वीर ली गई, जिसमें सूर्य की सतह मानव कोशिकाओं की संरचना की भांति दिख रही है। अनुसंधानकर्ताओं का दावा है कि इस तस्वीर की सहायता से आगे चलकर सूर्य की सतह के बारे में नई जानकारियां मिल सकती हैं। गैलीलियो टेलीस्कोप के बाद पृथ्वी से सूर्य के अध्ययन की दिशा में यह बहुत बड़ी छलांग है।

इसी महीने पार्कर सोलर प्रोब यान सूर्य के सबसे समीप पहुंचने वाला अंतरिक्ष यान बन गया। इसे नासा ने अगस्त 2018 में प्रक्षेपित किया था। यह सूर्य से मात्र एक करोड 87 लाख किलोमीटर की दूरी पर था। सूर्य से पृथ्वी की दूरी 15 करोड़ किलोमीटर है। सोलर प्रोब सूर्य की सबसे बाहरी सतह कोरोना के बारे में नई सूचनाएं भेजेगा।

इस वर्ष 15 नवम्बर को दुनिया का पहला निजी अंतरिक्ष यान स्पेस एक्स अमेरिका के कैनेडी अंतरिक्ष केंद्र से चार अंतरिक्ष यात्रियों को लेकर रवाना हुआ और 27 घंटे के सफर के बाद अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पहुंचा। अंतरिक्ष यात्रियों में तीन अमेरिका और एक जापान का है। यह स्पेस एक्स की दूसरी मानव सहित उड़ान है। यह नासा का पहला मिशन है, जिसमें अंतरिक्ष यात्रियों को अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पर भेजने के लिए किसी निजी अंतरिक्ष यान की सहायता ली गई है।

इसी साल 6 फरवरी को अमेरिकी अंतरिक्ष यात्री क्रिस्टीना कोच अंतरिक्ष में सबसे लंबे समय तक रहने वाली महिला का रिकॉर्ड अपने नाम कर सुरक्षित पृथ्वी पर लौट आईं। क्रिस्टीना कोच ने 328 दिन अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पर गुज़ारे। उन्होंने छह बार अंतरिक्ष में चहलकदमी भी की। उन्होंने बिना किसी पुरुष सहयोगी के अंतरिक्ष में चहलकदमी करके एक नया अध्याय रचा।

अमेरिकी अंतरिक्ष एजेंसी नासा के अंतरिक्ष यान ओसीरिस एक्स ने 20 अक्टूबर को चार वर्षों की लंबी यात्रा के बाद क्षुद्र ग्रह बेनू का स्पर्श किया। यान के रोबोटिक हाथ ने क्षुद्र ग्रह के नमूने एकत्रित किए। माना जाता है कि बेनू का निर्माण सौर मंडल के उद्भव के दौरान हुआ था। इससे वैज्ञानिकों को सौर मंडल की आरंभिक अवस्था को समझने में मदद मिलेगी। साथ ही उन तत्वों की पहचान करने में भी मदद मिलेगी, जिनसे पृथ्वी पर जीवन की उत्पत्ति हुई। अंतरिक्ष यान ओसीरिस रेक्स को सितंबर 2016 में रवाना हुआ था।

गुज़रे साल के अंत में जापान का अंतरिक्ष यान हयाबुसा-2 पहली बार किसी क्षुद्र ग्रह पर उतर कर वहां से नमूने लेकर पृथ्वी पर लौटा। हयाबुसा-2 का प्रक्षेपण 2014 में किया गया था।

दिसंबर में चीन का चंद्रयान चांग ई-5 चंद्रमा की सतह से नमूने लेकर सफलतापूर्वक पृथ्वी पर लौट आया। इस अभियान की शुरुआत 2004 में हुई थी। पिछले चार दशकों में चीन दुनिया का पहला देश है, जिसने चंद्रमा के नमूने पृथ्वी पर लाने के प्रयास किए थे। इसी महीने चीन के लांग मार्च-8 रॉकेट ने पांच उपग्रहों को अंतरिक्ष में सफलतापूर्वक विदाई दी।

वैज्ञानिकों ने मनुष्य में बुढ़ापे के जीन और उसे रोकने की प्रक्रिया के अनुसंधान में सफलता प्राप्त की। पत्रिका स्टेम सेल में प्रकाशित रिसर्च के अनुसार युनिवर्सिटी ऑफ विस्कॉन्सिन के डॉ. वॉन जू ली के अनुसार बुढ़ापा मेसेन्काइमल स्टेम कोशिकाओं (एमएससी) की गतिविधियों में कमी आने से होता है। नए शोध के अनुसार इसे दवाइयों और अन्य उपचारों के ज़रिए दूर किया जा सकेगा। इसके लिए कोशिकाओं की रिप्रोग्रामिंग की जाएगी।

इसी वर्ष सऊदी अरब की किंग अब्दुल्ला युनिवर्सिटी के वैज्ञानिकों ने सिंथेटिक त्वचा बना ली। इसकी विशेषता यह है कि यह अपने-आप रफू हो जाती है। इसे ई-स्किन नाम दिया गया है। सिंथेटिक त्वचा का उपयोग कृत्रिम अंगों के लिए भी किया जा सकता है।

माइकल फैराडे द्वारा बेंज़ीन की खोज के लगभग 200 वर्षों बाद रसायन विज्ञान के अनुसंधानकर्ताओं को इसकी जटिल इलेक्ट्रॉनिक संरचना को स्पष्ट करने में सफलता मिली। टिमथी श्मिट के नेतृत्व में वैज्ञानिक दल ने इसे सुलझाने के लिए कंप्यूटर मॉडलिंग का उपयोग किया था। 1930 के दशक से ही रसायन शास्त्र के अध्येताओं के बीच बेंज़ीन की आधारभूत इलेक्ट्रॉनिक संरचना को लेकर बहस होती रही है। हाल के वर्षों में बहस का महत्व और बढ़ गया था, क्योंकि नवीकरणीय ऊर्जा और दूरसंचार तकनीक में इसकी अहम भूमिका सामने आई है।

21 दिसंबर को शनि और बृहस्पति ग्रहों का दुर्लभ मिलन हुआ। इसे खगोल विज्ञान की बड़ी और ऐतिहासिक घटनाओं में शामिल किया गया। लगभग आठ सौ वर्ष बाद दोनों ग्रह एक-दूसरे के बहुत करीब दिखे थे। दो खगोलीय पिंडों के नज़दीक दिखने को ‘कंजंक्शन’ और शनि तथा बृहस्पति के इस तरह के मिलन को ‘ग्रेट कंजंक्शन’ कहते हैं। सन् 1623 में भी शनि और बृहस्पति एक-दूसरे के पास नज़र आए थे। बृहस्पति 12 वर्ष और शनि 29 वर्ष में सूर्य की परिक्रमा पूरी करता है। अब दोनों ग्रह साठ वर्ष बाद मार्च 2080 में पुन: इतने समीप दिखेंगे।

विदा हो चुके वर्ष में चीन के वैज्ञानिकों ने प्रकाश पर आधारित विश्व का पहला क्वांटम कंप्यूटर बनाने का दावा किया। यह पारंपरिक सुपर कंप्यूटर की तुलना में कई गुना तेज़ है। क्वांटम कंप्यूटर की मदद से कृत्रिम बुद्धि, चिकित्सा विज्ञान आदि क्षेत्रों में नई उपलब्धियां हासिल की जा सकेंगी।

वर्ष 2020 को राष्ट्र संघ द्वारा अंतर्राष्ट्रीय पादप स्वास्थ्य वर्ष घोषित किया गया था, जिसका उद्देश्य पादप जगत एवं उसके संरक्षण के बारे में जागरूकता पैदा करना था।

विदा हो चुके साल में रोबोट का जन्मशती वर्ष मनाया गया। विज्ञान कथाओं में रोबोट शब्द और विचार 1920 में सामने आया था। पिछले दशकों में बुद्धिमान रोबोट बनाने की दिशा में जमकर अनुसंधान हुआ है। बुद्धिमान रोबोट बनाने में कृत्रिम बुद्धि की अहम भूमिका है। बुद्धिमान रोबोट के आगमन ने मनुष्य के सामने अवसरों और अस्तित्व की नई चुनौती खड़ी कर दी है।

वर्ष 2020 के विज्ञान के नोबेल पुरस्कारों में अमेरिका का वर्चस्व रहा। रसायन विज्ञान के इतिहास में पहली बार यह सम्मान महिला वैज्ञानिकों के खाते में पहुंचा। चिकित्सा विज्ञान का नोबेल हेपेटाइटिस सी वायरस की खोज के लिए वैज्ञानिक हार्वे जे. आल्टर, चार्ल्स एम. राइस तथा माइकल हाटन को प्रदान किया गया। फिज़िक्स का नोबेल ब्लैक होल के रहस्यों की शानदार व्याख्या के लिए रॉजर पेनरोज़, राइनहार्ड गेनज़ेल और एंड्रिया गेज़ को दिया गया। रसायन शास्त्र का नोबेल इमैनुएल शार्पेची और जेनिफर ए. डाउडना को संयुक्त रूप से प्रदान किया गया। इन्होंने जीन संपादन तकनीक क्रिस्पर कास-9 विधि की खोज में विशेष योगदान किया है।

वर्ष 2020 में अमेरिकी विज्ञान कथा लेखक और जैव रसायनविद आइज़ैक एसीमोव की जन्मशती मनाई गई। उन्होंने लोकप्रिय विज्ञान की अनेक किताबें लिखी हैं तथा आई रोबोट सहित कई फिल्में भी बनाई हैं।

इसी वर्ष फरवरी में कंप्यूटर में जाने-माने ‘कट-कॉपी-पेस्ट’ कमांड के आविष्कारक लैरी टेस्लर का 74 वर्ष की आयु में निधन हो गया। उन्होंने कंप्यूटर के यूज़र इंटरफेज़ के विकास में अहम भूमिका निभाई थी। दिसंबर में संचार के क्षेत्र में वायरलेस कंप्यूटर नेटवर्क के जनक नार्मन अब्राामसन का निधन हो गया। उन्हें प्रारंभिक वायरलेस नेटवर्क एएलओएच नेट बनाने का श्रेय जाता है।

विलक्षण गणितज्ञ और नासा की महिला वैज्ञानिक कैथरीन कोलमैन गोबल जॉनसन का 24 फरवरी को 101 वर्ष की आयु में निधन हो गया। उन्होंने अंतरिक्ष यात्रियों को अंतरिक्ष यात्राओं पर ले जाने और सुरक्षित वापसी के लिए अपनी बेजोड़ विशेषज्ञता का परिचय दिया था। उन्हें नासा लूनर आर्बिटर और 1997 में वर्ष का गणितज्ञ सम्मान मिला था।

अलविदा हो चुके वर्ष में ईरान के न्यूक्लियर साइंटिस्ट मोहसिन फखरीजादेह की उपग्रह द्वारा नियंत्रित हथियारों से हत्या कर दी गई। फखरीजादेह को ईरान के परमाणु कार्यक्रम की सबसे बडी शक्ति माना जाता था।

विज्ञान जगत की प्रतिष्ठित पत्र-पत्रिकाओं के सम्पादकों और विश्लेषणकर्ताओं के अनुसार विदा हो चुके वर्ष 2020 में मूल विज्ञान की कोख से निकली प्रौद्योगिकी अथवा प्रयुक्त विज्ञान का समाज में वर्चस्व और विस्तार दिखाई दिया और मूलभूत विज्ञान हाशिए पर रहा।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://acs-h.assetsadobe.com/is/image//content/dam/cen/98/14/WEB/09814-cover5-corona.jpg/?$responsive$&wid=700&qlt=90,0&resMode=sharp2

विज्ञान नीति और कोरोना टीका बनाने की ओर बढ़ा भारत – चक्रेश जैन

विदा हो चुका वर्ष 2020 भारतीय विज्ञान जगत के लिए नई चुनौतियों और अपेक्षाओं का रहा। अदृश्य कोरोनावायरस से फैली कोविड-19 महामारी का विभिन्न क्षेत्रों में व्यापक प्रभाव दिखाई दिया। साल के पूर्वार्ध में वैज्ञानिकों ने नए कोरोनावायरस (सार्स-कोव-2) का जीनोम अनुक्रम पता करने में सफलता प्राप्त की। इसी के साथ देश में ही टीका बनाने का मार्ग प्रशस्त हुआ। दरअसल किसी भी रोग से जंग के लिए टीकों का विकास बेहद जटिल और परीक्षणों के कई चरणों से गुज़रने वाली लंबी अनुसंधान प्रक्रिया है। लेकिन वैज्ञानिकों ने प्रयोगशालाओं में रात-दिन एक कर वर्ष के अंत तक कोविड-19 का टीका बनाकर अपनी कुशलता का परिचय दिया।

वैज्ञानिक एवं औद्योगिक अनुसंधान परिषद के झंडे तले कार्यरत तीन प्रयोगशालाओं – हैदराबाद स्थित सेंटर फॉर सेल्यूलर एंड मॉलीक्युलर बायोलॉजी, नई दिल्ली स्थित इंस्टीट्यूट ऑफ जीनोमिक्स एंड इंटीग्रेटिव बायोलॉजी और चंडीगढ़ स्थित इंस्टीट्यूट ऑफ माइक्रोबियल टेक्नोलॉजी के अनुसंधानकर्ताओं ने सार्स-कोव-2 का जीनोम अनुक्रम तैयार किया, जिसका उद्देश्य वायरस की उत्पत्ति और उसके बदलते स्वरूपों का पता लगाकर टीका निर्माण की राह बनाना था।

गुज़रे साल में देश की पांचवी विज्ञान, प्रौद्योगिकी और नवाचार नीति-2020 (एसटीआईपी) का प्रारूप तैयार किया गया। देश में शोध और विकास को मूर्त रूप देने में विज्ञान और प्रौद्योगिकी नीतियों की महत्वपूर्ण भूमिका रही है। गौरतलब है कि स्वतंत्रता के बाद पहली विज्ञान नीति का निर्माण 1958 में किया गया था। वर्ष 2020 में बनाई जा रही नई विज्ञान नीति में आत्मनिर्भर भारत के विचार को केंद्र में रखकर स्वदेशी प्रौद्योगिकी, महिलाओं और पंचायतों के सशक्तिकरण पर ध्यान केंद्रित किया गया है। विज्ञान मंत्रालय ने पहली बार नई विज्ञान नीति निर्माण में राज्यों की विज्ञान परिषदों सहित लगभग 15,000 लोगों की राय ली। नई विज्ञान नीति में स्थानीय से वैश्विक नवाचारों, आवश्यकता आधारित प्रौद्योगिकी तैयार करने और सतत विकास को बढ़ावा देने की कोशिश की गई है।

हैदराबाद स्थित सेंटर फॉर सेल्यूलर एंड मॉलीक्युलर बायोलॉजी के अनुसंधानकर्ताओं को ततैया का जीनोम अनुक्रमण करने में सफलता मिली। ततैया का वैज्ञानिक नाम लेप्टोफिलिन बोलार्डी है। वैज्ञानिकों का कहना है कि ततैया का जीनोम अनुक्रमण ड्रॉसोफिला और ततैया के बीच होने वाले जैविक संघर्ष से सम्बंधित कारणों को समझने में सहायक होगा।

जनवरी में भारतीय विज्ञान कांग्रेस एसोसिएशन का 107वां सालाना जलसा बैंगलुरू में संपन्न हुआ, जिसमें देश-विदेश के वैज्ञानिकों और अनुसंधानकर्ताओं ने ग्रामीण विकास में विज्ञान और प्रौद्योगिकी की भूमिका पर मंथन किया। वैज्ञानिकों का कहना था कि ग्रामीण विकास में प्रौद्योगिकी को व्यापक बनाने की आवश्यकता है। वर्ष 2006 में आयोजित भारतीय विज्ञान कांग्रेस के दौरान समेकित ग्रामीण विकास के विभिन्न मुद्दों पर विमर्श हुआ था।

17 जनवरी को फ्रेंच गुआना प्रक्षेपण केंद्र से जी-सैट संचार उपग्रह को अंतरिक्ष में विदा किया गया। 7 नवंबर को भारतीय अंतरिक्ष अनुसंधान संगठन (इसरो) द्वारा श्रीहरिकोटा से पीएसएलवी-डीएल से दस उपग्रहों को अंतरिक्ष में सफलतापूर्वक भेजा गया। दस उपग्रहों में से नौ विदेशी हैं, जबकि राडार इमेजिंग उपग्रह अर्थ ऑब्जर्वेशन सेटैलाइट-1 स्वदेशी उपग्रह है। यह सामरिक निगरानी के साथ कृषि विज्ञान, वानिकी, भू-विज्ञान, तटीय निगरानी और बाढ़ जैसी आपदाओं के दौरान उपयोगी सिद्ध होगा। अंतरिक्ष विज्ञान की गतिविधियों और कार्यक्रमों में निजी क्षेत्र की सहभागिता के लिए मार्ग प्रशस्त हुआ।

कोरोना महामारी का असर भारत के प्रथम मानव मिशन गगनयान पर भी पड़ा। गगनयान मिशन का प्रक्षेपण अब अगले वर्ष तक होने की उम्मीद है। गगनयान परियोजना में तीन भारतीय वैज्ञानिक भेजे जाएंगे, जो सात दिन अंतरिक्ष में बिताएंगे।

गुज़रे साल वैज्ञानिकों की टीम ने अगस्त में मेघालय में मशरूम की रात में चमकने वाली एक नई प्रजाति रोरीडोमाइसेज़ फायलोस्टेकायडीस खोजी। अंधेरे में यह हरे रंग की रोशनी से जगमगाता है। इसी कारण इसे ल्यूमिनिसेंट मशरूम कहते हैं। मेघालय में मशरूम की अलग-अलग प्रजातियों का पता लगाने के लिए एक प्रोजेक्ट चल रहा है।

इसी वर्ष विज्ञान एवं प्रौद्योगिकी विभाग ने 50 वें वर्ष में प्रवेश किया और स्वर्ण जयंती वर्ष आयोजनों की शुरुआत हुई। विज्ञान एवं प्रौद्योगिकी विभाग की स्थापना 3 मई 1971 को की गई थी। इस विभाग की स्थापना का उद्देश्य देश में वैज्ञानिक गतिविधियों और परियोजनाओं को बढ़ावा देने में नोडल एजेंसी की भूमिका निभाना है।

विज्ञान समागम प्रदर्शनी का समापन 20 मार्च को दिल्ली में हुआ। यह अपने ढंग की अनोखी प्रदर्शनी थी, जिसमें आम लोगों को विज्ञान की प्रगत विधाओं से परिचित होने का मौका मिला। प्रदर्शनी मुम्बई, कोलकाता और बैंगलुरु के बाद दिल्ली पहुंची थी।

साल के उत्तरार्द्ध में भारत हाइपरसोनिक टेक्नोलॉजी प्राप्त करने वाला चौथा देश बन गया। इस तकनीक की सहायता से ध्वनि से छह गुना अधिक रफ्तार वाली मिसाइलें तैयार होंगी।

वर्ष के अंत में पहली बार वर्चुअल माध्यम से इंडिया इंटरनेशनल साइंस फेस्टीवल आयोजित किया गया, जिसमें इस बार 41 गतिविधियां शामिल की गर्इं। पहली बार महोत्सव में कृषि वैज्ञानिक सम्मेलन हुआ, जिसमें खेती-किसानी से सम्बंधित कार्यों के लिए कृत्रिम बुद्धि के उपयोग पर ज़ोर दिया गया। विज्ञान को उत्सव से जोड़ते इस कार्यक्रम की शुरुआत 2015 में नई दिल्ली से हुई थी।

गुज़रे वर्ष भारतीय वैज्ञानिक नेशनल सुपर कंप्यूटिंग मिशन के अंतर्गत देश में ही सुपरकंप्यूटरों की शृंखला तैयार करने में जुटे रहे। अंतरिक्ष, उद्योग और मौसम सम्बंधी पूर्वानुमानों में सुपरकंप्यूटरों की अहम भूमिका है।

10 जुलाई को रीवा अल्ट्रा मेगा सौर परियोजना राष्ट्र को समर्पित की गई। यह विश्व की बड़ी परियोजनाओं में से एक है। यह पहली सौर योजना है, जिसे विश्व बैंक और क्लीन टेक्नोलॉजी फंड से धनराशि मिली है। इस सौर परियोजना से हर साल 15.7 लाख टन कार्बन उत्सर्जन रोका जा सकेगा।

बीते साल ‘अम्फन’ और ‘निसर्ग’ जैसे विनाशकारी तूफान आए, लेकिन उपग्रहों से प्राप्त सटीक पूर्वानुमानों के आधार पर लाखों लोगों का जीवन बचा लिया गया।

विज्ञान के विभिन्न विषयों में मौलिक और उत्कृष्ट अनुसंधान के लिए 14 वैज्ञानिकों को शांतिस्वरूप भटनागर पुरस्कार से सम्मानित किया गया। इनमें दो महिला वैज्ञानिक भी शामिल हैं। अभी तक 560 वैज्ञानिकों को पुरस्कृत किया जा चुका है। इनमें 542 पुरुष और 18 महिला वैज्ञानिक हैं।

इसी वर्ष सितंबर में विख्यात अंतरिक्ष वैज्ञानिक प्रो. सतीश धवन का जन्मशती वर्ष मनाया गया। इसरो ने विभिन्न कार्यक्रम आयोजित किए और अंतरिक्ष में उनके असाधारण योगदान का स्मरण किया। प्रोफेसर धवन का जन्म 25 सितंबर 1920 को हुआ था। प्रोफेसर धवन 1972 में इसरो के अध्यक्ष बने थे।

इसी वर्ष सर पैट्रिक गेडेस द्वारा भारतीय वैज्ञानिक जगदीशचन्द्र बसु पर लिखी किताब के सौ साल पूरे हुए।

विदा हो चुके वर्ष में कोरोनावायरस पर बनाए गए विज्ञान कॉर्टूनों पर केंद्रित किताब बाय बाय कोरोना प्रकाशित हुई। पुस्तक के लेखक जाने-माने वैज्ञानिक और सांइटूनिस्ट डॉ. प्रदीप कुमार श्रीवास्तव हैं। यह विश्व की विज्ञान कॉर्टूनों पर प्रकाशित अपनी तरह की पहली किताब है।

दिसंबर में भारत उन चुनिंदा देशों में शामिल हो गया, जहां चालकरहित मेट्रो ट्रेनों का संचालन हो रहा है। देश में इसकी शुरुआत दिल्ली से हुई। चालकरहित मेट्रो की यात्रा कम्युनिकेशन बेस्ड ट्रेन कंट्रोल सिग्नलिंग सिस्टम पर आधारित है। बीते साल देश में ही तैयार ज़मीन से हवा में प्रहार करने वाली आकाश मिसाइल के निर्यात का मार्ग प्रशस्त हो गया। आकाश मिसाइल लड़ाकू विमानों, क्रूज़ मिसाइलों और ड्रोन पर सटीक निशाना लगा सकती है।

26 जनवरी 2020 को रोटावायरस वैक्सीन के खोजकर्ता और जैव प्रौद्योगिकी विभाग के पूर्व सचिव डॉ. एम.के. भान का निधन हो गया। 13 फरवरी को शांति के लिए नोबेल पुरस्कार से सम्मानित डॉ. राजेंद्र कुमार पचौरी नहीं रहे। उनके नेतृत्व में संयुक्त राष्ट्र के अंतर-सरकारी पैनल ने जलवायु परिवर्तन पर 2007 में नोबेल पुरस्कार प्राप्त किया था। श्री पचौरी आईपीसीसी के अध्यक्ष और टेरी के महानिदेशक रहे। उन्होंने जलवायु परिवर्तन और पर्यावरण से जुड़े संस्थानों में सक्रिय भूमिका निभाई थी। 2001 में पद्मभूषण से सम्मानित किया गया था।

18 अप्रैल 2020 को जाने-माने कृषि विज्ञानी और आनुवंशिकीविद प्रो. वी. एल. चोपड़ा का 83 वर्ष की आयु में देहांत हो गया। उन्होंने भारत में गेहूं की पैदावार बढ़ाने की दिशा में ऐतिहासिक योगदान किया। उन्हें कृषि के क्षेत्र में विशेष योगदान के लिए प्रतिष्ठित बोरलाग अवॉर्ड और 1985 में पद्मभूषण से अलंकृत किया गया था। वे योजना आयोग के सदस्य रहे। उन्होंने भारतीय कृषि अनुसंधान परिषद के महानिदेशक पद को सुशोभित किया। 

इस वर्ष 15 मई को प्रसिद्ध भौतिकीविद डॉ. एस. के. जोशी का निधन हो गया। उन्हें भौतिकी में विशेष योगदान के लिए प्रतिष्ठित शांतिस्वरूप भटनागर पुरस्कार मिला था।

22 जून 2020 को कोलकाता में अमलेंदु बंद्योपाध्याय का 90 वर्ष की आयु में निधन हो गया। उन्होंने खगोल विज्ञान को आम लोगों में लोकप्रिय बनाने में विशेष योगदान दिया था। उन्होंने आठ किताबें और लगभग 2500 लेख लिखे। उन्हें विज्ञान संचार में विशेष योगदान के लिए राष्ट्रीय विज्ञान एवं प्रौद्योगिकी संचार परिषद ने राष्ट्रीय पुरस्कार से सम्मानित किया था।

विख्यात गणितज्ञ सी. एस. शेषाद्रि का 17 जुलाई को 88 वर्ष की आयु में निधन हो गया। उन्हें ‘शेषाद्रि कांस्टेंट’ के लिए अत्यधिक ख्याति मिली। उन्हें पद्मभूषण और शांतिस्वरूप भटनागर पुरस्कार से सम्मानित किया गया था। इसी साल हमने प्रसिद्ध रेडियो खगोलविद प्रो. गोविन्द स्वरूप को खो दिया। सितंबर में विख्यात परमाणु वैज्ञानिक और परमाणु ऊर्जा आयोग के पूर्व निदेशक डॉ. शेखर बसु का निधन हो गया।

इसी वर्ष 7 सितंबर को जाने-माने वैज्ञानिक डॉ. नरेन्द्र सहगल का निधन हो गया। उन्हें विज्ञान संचार के क्षेत्र में विशेष योगदान के लिए अंतर्राष्ट्रीय कलिंग पुरस्कार से सम्मानित किया गया था। उन्होंने भारत में विज्ञान संचार की गतिविधियों के विस्तार में अहम भूमिका निभाई थी। डॉ. सहगल राष्ट्रीय विज्ञान एवं प्रौद्योगिकी संचार परिषद और विज्ञान प्रसार के संस्थापक निदेशक थे।

इसी वर्ष 14 दिसंबर को प्रसिद्ध एयरोस्पेस वैज्ञानिक आर. नरसिंहा का देहांत हो गया। उन्होंने लाइट कॉम्बैट एयरक्रॉफ्ट (एलसीए) और तेजस की डिज़ाइन एवं विकास में अहम भूमिका निभाई थी। प्रो. नरसिंहा को पद्मभूषण से सम्मानित किया गया था।

विज्ञान जगत की अंतर्राष्ट्रीय पत्र-पत्रिकाओं के संपादक मंडल ने इस बार बीते साल को यादगार बनाने वाले व्यक्तियों और अनुसंधान कथाओं का चयन कर एक सूची बनाई है, जिसमें कोविड-19 के टीकों के अनुसंधान और विकास को शामिल किया गया है। हमारे देश के विज्ञान एवं प्रौद्योगिकी मंत्री डॉ. हर्षवर्धन ने इंडिया इंटरनेशनल साइंस फेस्टीवल में अपने संबोधन के दौरान विदा हो चुके साल 2020 को ‘विज्ञान वर्ष’ की संज्ञा दी है।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.technologyforyou.org/wp-content/uploads/2020/04/covid-updates1.jpg

रसायन शास्त्र का नोबेल जेनेटिक कैंची के लिए – डॉ. सुशील जोशी

पिछले कुछ वर्षों में रसायन शास्त्र के नोबेल पुरस्कार कई बार ऐसी खोजों/आविष्कारों के लिए दिए गए हैं जिनका सम्बंध जीव विज्ञान से है। जैसे वर्ष 2018 का नोबेल एंज़ाइमों के निर्देशित विकास, 2017 का नोबेल जैविक अणुओं की संरचना पता करने के लिए इलेक्ट्रॉन सूक्ष्मदर्शी की तकनीक में परिष्कार तथा 2014 का फ्लोरेसेंस सूक्ष्मदर्शी तकनीक के विकास के लिए, 2015 का डीएनए की मरम्मत की क्रियाविधि की खोज के लिए दिए गए थे। इसी सिलसिले में इस वर्ष का रसायन नोबेल जीनोम संपादन (सरल शब्दों में काट-छांट) की नई तकनीक के विकास के लिए दिया गया। दिलचस्प बात है कि दोनों विजेता महिलाएं हैं – एमैनुएल शारपेंटिए और जेनिफर डाउडना।

तो इस वर्ष के नोबेल की विषयवस्तु पर आते हैं। सबसे पहली बात तो यह बताना ज़रूरी है कि उक्त दोनों शोधकर्ता जेनेटिक कैंची की खोज में नहीं निकले थे बल्कि वे तो बैक्टीरिया की इम्यून सिस्टम को बेहतर समझना चाहते थे। इस मायने में कहा जा सकता है कि उनकी खोज आकस्मिक संयोग का परिणाम थी, लेकिन साथ ही यह भी कहना होगा कि संयोग का फलित होना शोधकर्ता की दिमागी तैयारी के बगैर संभव नहीं है। अन्यथा सेब तो रोज़ गिरते रहते हैं।

दरअसल जेनेटिक कैंची की खोज करीब 8 वर्ष पहले हुई थी और तब से यह जीव वैज्ञानिकों का महत्वपूर्ण औज़ार बन चुकी है। इसके उपयोग के कई उदाहरण हैं। उनकी बात बाद में करेंगे।

शारपेंटिए वर्ष 2002 से स्ट्रेप्टोकॉकस प्योजेंस का अध्ययन करती रही हैं। यह बैक्टीरिया मनुष्यों में कई रोग पैदा करता है: टॉन्सिलाइटिस और इम्पेटिगो जैसी उपचार-योग्य बीमारियों से लेकर सेप्सिस व शरीर के मुलायम ऊतकों का नाश जैसी जानलेवा स्थितियां। शारपेंटिए समझना चाहती थीं कि रोगजनक बैक्टीरिया इतने संक्रामक क्यों होते हैं और वे एंटीबायोटिक दवाइयों के खिलाफ प्रतिरोध कैसे हासिल कर लेते हैं।

शारपेंटिए ने सबसे पहले तो यह देखा कि इस बैक्टीरिया में जीन्स का नियमन कैसे होता है यानी कब कौन-सा जीन चालू या बंद होगा, इसका निर्णय कैसे होता है।

इसी दौरान जेनिफर डाउडना का अनुभव आरएनए पर काम करने का था। आम तौर पर वैज्ञानिक मानते थे कि वे आरएनए की भूमिका व कामकाज को भली-भांति समझते हैं। लेकिन तभी अचानक पता चला कि कोशिकाओं में छोटे-छोटे आरएनए अणु होते हैं जो जीन्स की गतिविधि का नियमन करते हैं। इस प्रक्रिया को आरएनए दखलंदाज़ी (आरएनए इंटरफरेंस) कहते हैं। आरएनए के क्षेत्र में अपने अनुभव के साथ डाउडना आरएनए दखलंदाज़ी के नए क्षेत्र में काम करने लगीं।

इसी समय शोधकर्ताओं ने एक मज़ेदार बात पता की थी – जब काफी अलग-अलग बैक्टीरिया तथा एक अन्य किस्म के सूक्ष्मजीव आर्किया की जेनेटिक सामग्री की तुलना की गई तो समझ में आया कि उनमें डीएनए के कुछ अनुक्रम बार-बार दोहराए जाते हैं और काफी संरक्षित रखे जाते हैं। एक ही कोड बार-बार आता है।

बारंबार प्रकट होने वाले इन अनुक्रमों की शृंखला को क्लस्टर्ड रेग्यूलरली इंटरस्पस्पर्ड शॉर्ट पैलिंड्रॉमिक रिपीट्स (संक्षेप में CRISPR – क्रिस्पर) कहते हैं। यानी ये ऐसे अनुक्रम हैं जो सामान्य जेनेटिक कोड में बीच-बीच में कई बार प्रकट होते हैं। और उससे भी ज़्यादा हैरत की बात तो यह थी कि क्रिस्पर में मौजूद ये अनुक्रम विभिन्न वायरसों के जेनेटिक कोड से मेल खाते हैं। फिलहाल ऐसा माना जाता है कि जब कोई बैक्टीरिया वायरस संक्रमण के बाद जीवित रह पाता है, तो वह वायरस के जीनोम का एक टुकड़ा अपने जीनोम में जोड़ लेता है – यह भविष्य में उस संक्रमण को याद रखने में मदद करता है। यानी यह बैक्टीरिया की इम्यून सिस्टम का हिस्सा है। यह काम कैसे करती है?

बैक्टीरिया में इम्यून सिस्टम की बात ने जीव विज्ञान में तहलका मचा दिया। यह बात डाउडना को उत्साहित करने को पर्याप्त थी। साथ ही शोधकर्ताओं ने यह भी पता किया था कि बैक्टीरिया में कुछ ऐसे जीन्स भी होते हैं जो क्रिस्पर से सम्बद्ध होते हैं जिन्हें नाम दिया गया क्रिस्पर-सम्बद्ध यानी क्रिस्पर-एसोसिएटेड (कास) जीन्स। डाउडना यह देखकर रोमांचित हुर्इं कि ये कास जीन्स उन जीन्स जैसे ही हैं जो डीएनए को खोलने व काटने में माहिर होते हैं। तो उन्होंने कई सारे कास जीन्स खोज निकाले। क्रिस्पर-कास सिस्टम इतनी रोमांचक थी कि कई शोधकर्ता इस पर काम कर रहे थे। धीरे-धीरे स्पष्ट हुआ कि बैक्टीरिया की इम्यून सिस्टम कई रूपों में होती है। डाउडना ने जिस सिस्टम पर काम किया था वह वर्ग 1 की सिस्टम थी और काफी जटिल थी। इसमें वायरस को पछाड़ने के लिए कई प्रोटीन्स का उपयोग होता है।

दूसरी ओर, वर्ग 2 की सिस्टम अपेक्षाकृत सरल थी और उसमें मात्र एक प्रोटीन की ज़रूरत होती है। शारपेंटिए इसी पर शोध कर रही थीं। उन्होंने स्ट्रेप्टोकॉकस प्योजेंस का अध्ययन करते हुए पता किया था कि इस बैक्टीरिया में एक छोटा आरएनए अणु काफी मात्रा में पाया जाता है और इस आरएनए का जेनेटिक कोड बैक्टीरिया के जीनोम में पाए गए क्रिस्पर अनुक्रम से बहुत मेल खाता है। इनकी समानता को देखते हुए शारपेंटिए को लगा कि हो न हो, इनमें कुछ सम्बंध है। आगे विश्लेषण से पता चला कि अज्ञात आरएनए का एक हिस्सा क्रिस्पर के उस हिस्से से मेल खाता है जो दोहराया जाता है। दिक्कत यह थी कि शारपेंटिए ने इससे पहले क्रिस्पर सिस्टम पर काम नहीं किया था लेकिन अब उनके समूह ने स्ट्रेप्टोकॉकस प्योजेंस पर गहन शोध आरंभ कर दिया। इस बैक्टीरिया की सिस्टम वर्ग 2 की होती है और इसमें वायरस डीएनए को काटने के लिए सिर्फ एक प्रोटीन (कास-9) की आवश्यकता होती है। इस अज्ञात आरएनए अणु को नाम दिया गया है ट्रांस-एक्टिवेटिंग क्रिस्पर आरएनए और इसकी भूमिका निर्णायक होती है। इसी मोड़ पर शारपेंटिए और डाउडना के बीच सहयोग शुरू हुआ। सहयोग का आधार स्पष्ट था – स्ट्रेप्टोकॉकस प्योजेंस की अपेक्षाकृत सरल सिस्टम में कास-9 प्रोटीन की भूमिका अध्ययन।

विचार यह बना कि संभवत: क्रिस्पर आरएनए तो वायरस के डीएनए को पहचानने का काम करता है और कास-9 वह कैंची है जो डीएनए को काटती है। लेकिन जब इसके आधार पर परखनलियों में प्रयोग किए गए तो ऐसा कुछ नहीं हुआ। तो क्या प्रयोग की परिस्थितियों में कुछ खामी है या क्या कास-9 की भूमिका कुछ और ही है?

तमाम प्रयोगों और दिमाग खपाने के बाद इन दो शोधकर्ताओं ने तय किया कि वे प्रयोग में ट्रांस-एक्टिवेटेड आरएनए में मिलाकर देखेंगे। जैसे ही यह मिलाया गया डीएनए दो टुकड़ों में बंट गया। इसके साथ ही शारपेंटिए और डाउडना ने बैक्टीरिया में एक महत्वपूर्ण प्रक्रिया की खोज कर ली थी।

अगला काम यह किया गया कि क्रिस्पर आरएनए और ट्रांस-एक्टिवेटेड आरएनए को जोड़कर एक ही अणु बना दिया। इसे उन्होंने गाइड-आरएनए नाम दिया। तो अब जेनेटिक कैंची का एक सरलीकृत रूप मिल चुका था।

इस कैंची की मदद से शोधकर्ता विभिन्न जीवों में जीनोम को मनचाहे स्थानों पर काट सकते हैं। यानी वे किसी भी जीव के डीएनए में से कोई जीन काटकर अलग कर सकते हैं। डाउडना और शारपेंटिए ने यह करके भी दिखा दिया। 2012 में इस जेनेटिक कैंची की खोज जीव वैज्ञानिकों के लिए एक महत्वपूर्ण औज़ार बन गई। सिर्फ बैक्टीरिया नहीं, मनुष्य जैसे विकसित जीव की कोशिकाओं में भी इसकी मदद से जेनेटिक परिवर्तन करना संभव हो गया।

आप देख ही सकते हैं कि यह जीव वैज्ञानिकों के हाथों में एक ऐसा औज़ार है जिसके दुरुपयोग की काफी संभावनाएं हैं। फसल सुधार, जेनेटिक उपचार जैसे क्षेत्रों में इसके उपयोग ज़ाहिर हैं। आनुवंशिक रोगों के संदर्भ में भी इसके उपयोग पर विचार किया जा रहा है। लेकिन इसकी मदद से कई ऐसे परिवर्तन भी किए जा सकते हैं, जिनके साथ नैतिक सवाल उठेंगे। चीन के एक शोध समूह ने क्रिस्पर-कास-9 का उपयोग करके जेनेटिक रूप से परिवर्तित बच्चे पैदा करने का दावा किया था। इस तकनीक ने जैव नैतिकता के नए सवाल प्रस्तुत किए हैं।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://english.cdn.zeenews.com/sites/default/files/styles/zm_700x400/public/2020/10/07/891079-nobel-chemistry.jpg

विज्ञान के नोबेल पुरस्कार – चक्रेश जैन

र्ष 2020 में विज्ञान की तीनों विधाओं – चिकित्सा विज्ञान, भौतिकी और रसायन शास्त्र – में युगांतरकारी अनुसंधानों के लिए आठ वैज्ञानिकों को सम्मानित किया गया है। उल्लेखनीय बात यह है कि रसायन विज्ञान के दीर्घ इतिहास में पहली बार यह सम्मान पूरी तरह महिलाओं की झोली में गया है और भौतिकी में भी एक महिला सम्मानित की गई है।

चिकित्सा विज्ञान

चिकित्सा विज्ञान का नोबेल पुरस्कार हेपेटाइटिस सी वायरस की खोज के लिए अमेरिकी वैज्ञानिकों हार्वे जे. आल्टर, चार्ल्स एम. राइस तथा ब्रिटिश वैज्ञानिक माइकल हाटन को संयुक्त रूप से दिया गया है। इनके अनुसंधान की बदौलत इस रोग की चिकित्सा संभव हुई है। इन शोधार्थियों को इस महत्वपूर्ण योगदान के लिए यह सम्मान करीब चार दशक बाद मिला है; इस शोधकार्य से भविष्य में लाखों लोगों को नया जीवन मिलेगा।

हेपेटाइटिस ए और हेपेटाइटिस बी वायरसों का पता 1960 के मध्य दशक में लग चुका था। हेपेटाइटिस बी वायरस की खोज के लिए 1976 में ब्रॉश ब्लमबर्ग को नोबेल पुरस्कार मिला था। हार्वे ने 1972 में रक्ताधान प्राप्त मरीजों पर शोध के दौरान एक और अनजाने संक्रामक वायरस का पता लगाया। उन्होंने अध्ययन के दौरान पाया कि मरीज़ रक्ताधान के दौरान बीमार हो जाते थे। उन्होंने आगे चलकर बताया कि संक्रमित मरीज़ों का ब्लड चिम्पैंज़ी को देने के बाद चिम्पैंजी बीमार हो गए। चार्ल्स राइस ने शुरुआत में अज्ञात वायरस को ‘गैर-ए, गैर-बी’ नाम दिया।

माइकल हाटन ने 1989 में इस वायरस के जेनेटिक अनुक्रम के आधार पर बताया कि यह फ्लेवीवायरस का ही एक प्रकार है। आगे चलकर इसे हेपेटाइटिस सी वायरस नाम दिया गया। चार्ल्स राइस ने 1997 में चिम्पैंज़ी के लीवर में जेनेटिक इंजीनिरिंग से तैयार वायरस प्रविष्ट कराया और बताया कि इससे चिम्पैंज़ी संक्रमित हुआ। इन तीनों वैज्ञानिकों के स्वतंत्र योगदान को एक साथ रखकर हेपेटाइटिस सी रोग पर विजय मिली है।

विश्व स्वास्थ्य संगठन के अनुसार विश्व भर में सात करोड़ लोग हेपेटाइटिस सी वायरस से पीड़ित हैं। लगभग चार लाख लोग हर साल मौत के मुंह में चले जाते हैं। मनुष्य में लीवर कैंसर का मुख्य कारण हेपेटाइटिस सी वायरस है, जिसकी वजह से लीवर प्रत्यारोपण की ज़रूरत पड़ती है। एक बात और, हेपेटाइटिस सी से संक्रमित व्यक्ति में लक्षण देर से प्रकट होते हैं और तब तक मरीज़ लीवर कैंसर की चपेट में आ चुका होता है। हेपेटाइटिस सी वायरस का टीका अभी तक नहीं बन पाया है क्योंकि यह वायरस बहुत जल्दी-जल्दी परिवर्तित हो जाता है।

भौतिक शास्त्र

इस साल का भौतिकी का नोबेल पुरस्कार तीन वैज्ञानिकों को संयुक्त रूप से मिला है। ये हैं – रोजर पेनरोज़, रिनहर्ड गेनज़ेल और एंड्रिया गेज। इन्होंने ब्लैक होल के रहस्यों की शानदार व्याख्या की और हमारी समझ के विस्तार में असाधारण योगदान दिया है।

पिछले वर्ष 10 अप्रैल को खगोल शास्त्रियों ने ब्लैक होल की एक तस्वीर जारी की थी। यह तस्वीर पूर्व की वैज्ञानिक धारणाओं से पूरी तरह मेल खाती है। आइंस्टाइन ने पहली बार 1916 में सापेक्षता सिद्धांत के साथ ब्लैक होल की भविष्यवाणी की थी।

ब्लैक होल हमेशा ही खगोल शास्त्रियों के लिए कौतूहल का विषय रहा है। पहला ब्लैक होल 1971 में खोजा गया था। 2019 में इवेंट होराइज़न टेलीस्कोप से ब्लैक होल का चित्र लिया गया था। यह हमसे पांच करोड़ वर्ष दूर एम-87 नामक निहारिका में स्थित है। ब्लैक होल का गुरूत्वाकर्षण बहुत अधिक होता है, जिसके खिंचाव से कुछ भी नहीं बच सकता, प्रकाश भी नहीं।

नोबेल पुरस्कार की घोषणा में बताया गया है कि रोजर पेनरोज़ को ब्लैक होल निर्माण की मौलिक व्याख्या और नई रोशनी डालने के लिए पुरस्कार की आधी धनराशि दी जाएगी।

वैज्ञानिक रिनहर्ड गेनज़ेल और एंड्रिया गेज ने 1990 के दशक के आरंभ में आकाशगंगा (मिल्कीवे) के सैजिटेरिस-ए क्षेत्र पर शोधकार्य किया है। उन्होंने विश्व की सबसे बड़ी दूरबीन का उपयोग कर अध्ययन की नई विधियां विकसित कीं। दोनों अध्येताओं को आकाशगंगा के केंद्र में ‘अति-भारी सघन पिंड’ की खोज के लिए पुरस्कार दिया जाएगा।

एंड्रिया गेज आज तक भौतिकी में पुरस्कृत चौथी महिला वैज्ञानिक हैं।

रसायन विज्ञान

रसायन विज्ञान का नोबेल पुरस्कार फ्रांस की इमैनुएल शारपेंटिए और अमेरिका की जेनिफर ए. डाउडना को संयुक्त रूप से दिया जाएगा। इन्होंने जीन संपादन की क्रिस्पर कॉस-9 तकनीक की खोज में अहम योगदान दिया है। यह सम्मान खोज के लगभग आठ वर्षों बाद मिला है।

इमैनुएल शारपेंटिए और जेनिफर डाउडना ने क्रिस्पर कॉस-9 जेनेटिक कैंची का विकास किया है। इसे जीन संपादन का महत्वपूर्ण औज़ार कहा जा सकता है। इसकी सहायता से जीव-जंतुओं, वनस्पतियों और सूक्ष्मजीवों के जीनोम में बारीकी से बदलाव किया जा सकता है, सर्वथा नए जीन्स से लैस जीव विकसित किए जा सकते हैं।

जीनोम संपादन सर्वथा नया और रोमांचक विषय है। पिछले साल नवंबर में हांगकांग में आयोजित मानव जीनोम संपादन शिखर सम्मेलन में चीनी वैज्ञानिक ही जियानकुई ने जीन संपादन तकनीक से संपादित मानव भ्रूणों से पैदा हुए दो मादा शिशुओं का दावा कर सभी को अचंभित कर दिया था। जीनोम संपादन ने जीव विज्ञान में नई संभावनाओं का मार्ग प्रशस्त किया है। रोगाणु मुक्त और अधिक पैदावार देने वाली फसलों के बीज तैयार किए जा सकेंगे, आनुवंशिक रोगों की चिकित्सा हो सकेगी, कोविड-19 वायरस का कारगर टीका बनाने में मदद मिलेगी। जीनोम संपादन के ज़रिए ‘स्वस्थ और प्रतिभाशाली’ शिशु पैदा किए जा सकते हैं। और यह विवाद का विषय बन गया है जिसने कई नैतिक सवालों को जन्म दिया है।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static01.nyt.com/images/2020/10/05/science/05NOBEL-PRIZE-LIST01/05NOBEL-PRIZE-LIST01-jumbo.jpg?quality=90&auto=webp