आदिम समुद्री शिकारी एक विशाल ‘तैरता सिर’ था

दो साल पहले वैज्ञानिकों ने ‘मिलेनियम फाल्कन’ को पृथ्वी के पहले समुद्री शिकारी की उपाधि से नवाज़ा था। उसके दो साल बाद उन्हीं शोधकर्ताओं को कनाडा के बर्जेस शेल के उसी स्थान पर एक बड़े अंतरिक्ष यान जैसे जीव का जीवाश्म मिला। युनिवर्सिटी ऑफ टोरंटो के जीवाश्म विज्ञानी जोसेफ मोयसियक के अनुसार आधा मीटर लंबा यह आर्थोपॉड (सन्धिपाद) मूलत: एक विशाल ‘तैरता सिर’ था, जो 50 करोड़ साल पहले कैम्ब्रियन समुद्र में रहता था।

टाइटेनोकोरिस गेनेसी का सिर उसके शरीर की लगभग आधी लंबाई के बराबर था, और वह एक गुंबदनुमा, नुकीले सिरे वाले कवच से ढंका हुआ था। इसी विशेषता के कारण इसे लैटिन नाम मिला जिसका अर्थ है ‘टाइटन का हेलमेट’। यह जीव समुद्र के पेंदे से सटकर तैरता था, और अपने कांटेनुमा उपांगों से कीचड़ से अपना शिकार खोदता था। संभवत: इसका नुकीला हेलमेट इस खुदाई में मदद करता था।

इसकी आंखें खोल के पीछे की तरफ ऊपर की ओर थीं जो शिकार खोजने के काम में मददगार तो नहीं रही होंगी बल्कि शिकारियों को भांपने के लिए होंगी।

टाइटेनोकोरिस आर्थोपोड्स के एक विविध समूह (रेडियोडोन्ट्स) से सम्बंधित है, जो लगभग 52 करोड़ वर्ष पहले हुए कैम्ब्रियन विस्फोट के तुरंत बाद मकड़ियों, कीड़ों और हॉर्सशू केकड़ों के पूर्वजों से अलग हो गए थे। इस समय जब कशेरुकी जीव छिंगली बराबर मछली से थोड़े ही बड़े थे, तब रेडियोडोन्ट्स का कैम्ब्रियन समुद्र पर दबदबा था।

सभी रेडियोडोन्ट्स की तीन विशेषताएं होती हैं: इनका मुंह गोलाकार होता है जो एक अनानास की खड़ी काट की तरह दिखता है और इनमें मांस को फाड़ने वाले पैने दांत होते हैं, मुंह के सामने एक जोड़ी कांटेदार उपांग होते हैं और बड़ी संयुक्त आंखें होती हैं। इस नई जीवाश्म प्रजाति में ये सभी लक्षण दिखते हैं।

शोधकर्ताओं को जब इसका जीवाश्म मिला तब पहले तो उन्होंने सोचा कि यह जीवाश्म केवल एक विशाल कैम्ब्रोरेस्टर है, क्योंकि कैम्ब्रोरेस्टर उस स्थान पर बहुतायत में पाए जाते थे। लेकिन जब उन्होंने 11 सम्बंधित नमूनों से इस जीवाश्म की तुलना की तो इसे बहुत अलग पाया। रॉयल सोसाइटी ओपन एक्सेस में शोधकर्ता बताते हैं कि यह कुछ नया था। और उनके अनुसार टाइटेनोकोरिस को नया जीनस मिलना चाहिए था।

कैम्ब्रोरेस्टर के स्थान पर टाइटेनोकोरिस का मिलना कैम्ब्रियन पारिस्थितिक तंत्र की विविधता को रेखांकित करता है – यहां शिकारी जीव बहुतायत में हैं। पृथ्वी पर शुरुआत में समुद्रों में प्रचुर मात्रा में शिकार उपलब्ध रहा होगा जिससे एक ही स्थान पर एक साथ कई शिकारी जीवों को पर्याप्त भोजन मिल जाता होगा।

बहरहाल, शोधकर्ता अगली गर्मियों में उस स्थान पर जाकर अधिक संपूर्ण टाइटेनोकोरिस जीवाश्म खोजने के लिए जाएंगे। हो सकता है कि उन्हें चट्टानों में छिपी कोई नई प्रजाति भी मिल जाए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.independent.co.uk/2021/09/09/20/Titanokorys_anterior.jpeg?width=1200&auto=webp&quality=75

सबसे चमकदार ततैया के छत्ते

हालिया अध्ययन बताता है कि जीव-जगत में सबसे चमकदार हरी चमक जुगनू की नहीं होती, बल्कि एशिया में पाई जानी वाली पेपर ततैया के छत्ते हरे रंग में सबसे तेज़ चमकते हैं। जर्नल ऑफ दी रॉयल सोसाइटी इंटरफेस में प्रकाशित रिपोर्ट के अनुसार यह प्रकाश ततैया के लार्वा (जीनस पॉलिस्टेस) द्वारा ककून में बुने रेशम प्रोटीन से निकलता है। इस चमक को पराबैंगनी रोशनी में 20 मीटर दूर से देखा जा सकता है।

शोधकर्ताओं को लगता है कि छत्ते की यह चमक संध्या के समय ततैया को घर वापसी में मदद करती है – जब शाम गहराने लगती है लेकिन हल्की पराबैंगनी रोशनी होती है। पोलिस्टेस 540 नैनोमीटर तरंग दैर्घ्य तक का प्रकाश देख सकते हैं, और ककून से निकलने वाला हरा प्रकाश इसी तंरग दैर्घ्य का होता है।

यह भी संभावना है कि यह फ्लोरेसेंट प्रोटीन सूर्य के पराबैंगनी विकिरण को अवशोषित कर लेता है और विकसित होते लार्वा को इस हानिकारक विकिरण से बचाता है। संभवत: फ्लोरेसेंस लार्वा की वृद्धि में भी मदद करता है: शोधकर्ता बताते हैं कि कई पोलिस्टेस प्रजातियों की वृद्धि जंगल में बरसात के मौसम के दौरान होती हैं, जब अक्सर धुंध या बादल छाए रहते हैं। तब यह ककून लैम्प धुंध में ततैयों को सूर्य का अंदाज़ा देता है; ककून की हरी रोशनी ततैयों द्वारा दिन-रात चक्र का तालमेल बनाए रखने में उपयोग की जाती होगी, जो उनके उचित विकास में महत्वपूर्ण है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.abm0832/full/_20210824_on_glowing_waspnest.jpg

वायरस की मदद से परजीवी ततैया पर विजय

वायरस की मदद से परजीवी ततैया पर पतंगों और तितलियों के दो बड़े दुश्मन हैं – परजीवी ततैया और वायरस। ये एक दूसरे से संघर्ष भी करते हैं। एक हालिया अध्ययन से पता चला है कि कुछ वायरस संक्रमण के बाद पतंगों और तितलियों में अपने जीन्स स्थानांतरित करते हैं जिससे वे परजीवी का सफाया करने वाले प्रोटीन बनाने लगते हैं।

गौरतलब है कि ततैया और मक्खियों की कई प्रजातियां अन्य कीड़ों के अंदर अपने अंडे देती हैं जिससे उनकी संतानों को भोजन का स्रोत और विकास के लिए एक सुरक्षित स्थान मिल जाता है। लेकिन इस पूरी प्रक्रिया में मेज़बान जीव की जान चली जाती है। लेकिन आर्मीवर्म, कटवर्म और कैबेज बटरफ्लाई जैसी कुछ प्रजातियों में कुछ ततैया के प्रति प्रतिरोध देखा गया है।

मामले की छानबीन के लिए टोकियो युनिवर्सिटी ऑफ एग्रीकल्चर एंड टेक्नॉलॉजी की कीटविज्ञानी मडोका नकाई और उनकी टीम ने पहले नॉर्थ आर्मीवर्म लार्वा को सामान्य पॉक्स वायरस से संक्रमित किया और फिर विभिन्न परजीवी ततैया प्रजातियों से संपर्क करवाया। असंक्रमित लार्वा परजीवियों के शिकार हो गए, जबकि वायरस-संक्रमित लार्वा और उनके प्लाज़्मा ने मीटियोरस पल्चीकॉर्निस के अलावा, लगभग सभी परजीवियों को खत्म कर दिया। शोधकर्ताओं ने संक्रमित आर्मीवर्म में दो प्रोटीन्स की भी पहचान की, जिसे उन्होंने पैरासीटॉइड किलिंग फैक्टर (PKF) नाम दिया। उन्हें लगता है कि यह परजीवी के लिए विषैला हो सकता है।                

इसके बाद युनिवर्सिटी ऑफ वालेंसिया के कीट विज्ञानी साल्वेडोर हेरेरो और सहयोगियों ने कीट-संक्रामक वायरस और पतंगे व तितली दोनों में वे जीन्स खोज निकाले जो PKF का निर्माण कर सकते हैं। विश्लेषण से पता चलता है कि PKF जीन कई बार वायरस से इन कीटों में स्थानांतरित हुआ है। यानी वायरस से संक्रमित होने के बाद भी कोई कीट जीवित रहे तो उसे ऐसा जीन मिल जाता है जो परजीवी से रक्षा करता है।

PKF प्रोटीन की भूमिका की बात सुनिश्चित करने के लिए युनिवर्सिटी ऑफ ब्रिटिश कोलंबिया के आणविक जीवविज्ञानी डेविड थीलमन और उनके सहयोगियों ने आर्मीवर्म्स को दो वायरसों से संक्रमित किया। उन्होंने पाया कि संक्रमित आर्मीवर्म्स ततैया लार्वा को रोकने में सफल रहे। इसके अलावा, बीट आर्मीवर्म जिनके स्वयं के जीन PKF का निर्माण करते हैं, भी परजीवियों को मारने में सक्षम थे। जब PKF बनाने वाले जीन को खामोश कर दिया, तो कई परजीवी जीवित रहे। अर्थात परजीवियों को मारने में PKF की भूमिका है। रिपोर्ट साइंस में प्रकाशित हुई है।    

PKF से परजीवी कैसे मरते हैं यह पता लगाने के लिए वैज्ञानिकों ने एक ततैया लार्वा को संक्रमित नार्थ आर्मीवर्म प्लाज़्मा के संपर्क में रखा। पता चला कि PKF ने प्रभावित कोशिकाओं को तहस-नहस कर दिया था।                                 

इस अध्ययन से शोधकर्ताओं को फसलों और जंगलों में लार्वा-परजीवियों के रूप में उपयोग किए जाने वाले कीटनाशकों के प्रति प्रतिरोध को समझने में मदद मिल सकती है। हालांकि, इसकी जटिलता को समझने के लिए अभी और अध्ययन की आवश्यकता है। फिर भी, इन नए प्रोटीन्स की पहचान से आगे का रास्ता तो मिला है। शोधकर्ता वायरस-मेज़बान-परजीवी के पारस्परिक प्रभाव को जांचना चाहते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/_20210729_on_parasiticwasp.jpg?itok=CNreSDYU

हवा से प्राप्त डीएनए से जीवों की पहचान

डीएनए हर जगह पाया जाता है। यह हवा में भी मौजूद होता है, इसी कारण कई लोगों को पराग या बिल्ली के बालों की रूसी से एलर्जी होती है। हाल ही में दो शोध समूहों ने अलग-अलग काम करते हुए बताया है कि वातावरण में कई जीवों का डीएनए पाया जाता है जो आसपास के क्षेत्रों में उनकी उपस्थिति का पता लगाने में काम आ सकता है।

टेक्सास टेक युनिवर्सिटी के इकॉलॉजिस्ट मैथ्यू बार्नेस इस अध्ययन को काफी महत्वपूर्ण मानते हैं जिससे हवा के नमूनों की मदद से पारिस्थितिकी तंत्र में कई प्रजातियों का पता लगाया जा सकता है। इसके लिए शोधकर्ता काफी समय से पानी में बिखरे डीएनए की मदद से ऐसे जीवों को खोजने का प्रयास कर रहे थे जो आसानी से नज़र नहीं आते। झीलों, नदियों और तटीय क्षेत्रों से प्राप्त पर्यावरणीय डीएनए (ई-डीएनए) से प्राप्त नमूनों से शोधकर्ताओं को लायनफिश के साथ-साथ ग्रेट क्रेस्टेड न्यूट जैसे दुर्लभ जीवों का पता लगाने में भी मदद मिली। हाल ही में कुछ वैज्ञानिकों ने तो पत्तियों की सतह से प्राप्त ई-डीएनए से कीड़ों को ट्रैक किया और मृदा से प्राप्त ई-डीएनए से कई स्तनधारियों का भी पता लगाया।

अलबत्ता, हवा में उपस्थित ई-डीएनए पर कम अध्ययन हुए हैं। हालांकि, यह अभी स्पष्ट नहीं है कि जीव कितने ऊतक हवा में छितराते हैं और आनुवंशिक सामग्री कितने समय तक हवा में बनी रहती है। पूर्व के कुछ अध्ययनों में हवा में बहुतायत से पाए जाने वाले बैक्टीरिया और कवक सहित अन्य सूक्ष्मजीवों का पता लगाने के लिए मेटाजीनोमिक अनुक्रमण का उपयोग किया गया है। इस तकनीक में डीएनए के मिश्रण का विश्लेषण किया जाता है। इसके साथ ही 2015 में वाशिंगटन डीसी में लगाए गए एयर मॉनीटर्स में कई प्रकार के कशेरुकी और आर्थोपोडा जंतुओं के ई-डीएनए पाए गए थे। हालांकि इस तकनीक की उपयोगिता के बारे में अभी कुछ स्पष्ट नहीं था और न ही यह पता था कि स्थलीय जीवों द्वारा त्यागी कोशिकाएं हवा में कैसे बहती हैं।   

इस वर्ष की शुरुआत में यॉर्क युनिवर्सिटी की मॉलिक्यूलर इकॉलॉजिस्ट एलिज़ाबेथ क्लेयर ने पीयर जे में बताया था कि प्रयोगशाला से लिए गए हवा के नमूनों में नेकेड मोल रैट का डीएनए पहचाना जा सकता है। लेकिन खुले क्षेत्रों में ई-डीएनए के उपयोग की संभावना का पता लगाने के लिए क्लेयर और उनके सहयोगियों ने चिड़ियाघर का रुख किया। मुख्य बात यह है कि चिड़ियाघर में प्रजातियां ज्ञात होती हैं और आसपास के क्षेत्रों में नहीं पार्इं जातीं। यहां टीम हवा में पाए जाने वाले डीएनए के स्रोत का पता कर सकती थी।

क्लेयर ने चिड़ियाघर की इमारतों के बाहर और अंदर से 72 नमूने एकत्रित किए। बहुत कम मात्रा में प्राप्त डीएनए को बड़ी मात्रा में प्राप्त करने के लिए पॉलिमरेज़ चेन रिएक्शन का उपयोग किया गया। ई-डीएनए को अनुक्रमित करने के बाद उन्होंने ज्ञात अनुक्रमों के एक डैटाबेस से इनका मिलान किया। टीम ने चिड़ियाघर, उसके नज़दीक और आसपास की 17 प्रजातियों (जैसे हेजहॉग और हिरण) की पहचान की। चिड़ियाघर के कुछ जीवों के ई-डीएनए उनके बाड़ों से लगभग 300 मीटर दूर पाए गए। उन्हें चिड़ियाघर के जीवों को खिलाए जाने वाले चिकन, सूअर, गाय और घोड़े के मांस के ई-डीएनए भी प्राप्त हुए हैं। टीम ने कुल 25 स्तनधारियों और पक्षियों की पहचान की है। इसी प्रकार का एक अध्ययन डेनमार्क के शोधकर्ताओं ने कोपेनहेगन चिड़ियाघर में भी किया। यहां कुल 49 प्रजातियों के कशेरुकी जीवों की पहचान की गई।

कुछ शोधकर्ताओं का मानना है कि इन वायुवाहित डीएनए की मदद से उन जीवों का पता लगाया जा सकता है जिनको खोज पाना काफी मुश्किल होता है। ये जीव मुख्य रूप से शुष्क वातावरण, गड्ढों या गुफाओं में रहते हैं या फिर पक्षियों जैसे ऐसे वन्यजीव जो कैमरों की नज़र से बच निकलते हैं।

हालांकि, इस प्रकार से वायुवाहित डीएनए से जीवों की उपस्थिति का पता लगाना अभी भी पूरी तरह से स्पष्ट नहीं है। सबसे बड़ा सवाल तो यह है कि ये ई-डीएनए हवा में कितनी दूरी तक यात्रा कर सकते हैं। यानी डैटा के आधार पर किसी जीव की हालिया स्थिति बताना मुश्किल है। डीएनए बहकर कितनी दूर जाएगा यह कई कारकों पर निर्भर करता है। जैसे ई-डीएनए जंगल की तुलना में घास के मैदानों में ज़्यादा दूरी तक फैल सकता है। इसमें एक मुख्य सवाल यह भी है कि वास्तव में जीव डीएनए का त्याग कैसे करते हैं। संभावना है कि वे अपनी त्वचा को खरोंचने, रगड़ने, छींकने या लड़ाई जैसी गतिविधियों के दौरान त्यागते होंगे। इसके अलावा ई-डीएनए अध्ययन में नमूनों को संदूषण से बचाना भी काफी महत्वपूर्ण होता है।

लेकिन इन अज्ञात पहलुओं के बावजूद बार्नेस को इस अध्ययन से काफी उम्मीदें हैं। आने वाले समय में इस तकनीक की मदद से वैज्ञानिक हवा के नमूनों से कीटों की पहचान करने का भी प्रयास करेंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_large/public/eDNA_1280x720.jpg?itok=6n291lDK

मादा नेवलों में विचित्र प्रसव-तालमेल

हाल ही में नेवलों की आबादी पर किए गए अध्ययन से प्रजनन सम्बंधी कुछ अद्भुत परिणाम सामने आए हैं।

युगांडा में किए गए इस अध्ययन में पाया गया कि एक समूह की 60 प्रतिशत मादा गर्भवती नेवले एक ही रात बच्चों को जन्म देती हैं भले ही उनके गर्भधारण का समय अलग-अलग ही क्यों न हो। बायोलॉजी लेटर्स नामक जर्नल में प्रकाशित रिपोर्ट के अनुसार यह तालमेल वास्तव में घातक प्रतियोगिता को टालने के इरादे से प्रेरित है।

युनाइटेड किंगडम स्थित युनिवर्सिटी ऑफ एक्सेटर की जीव विज्ञानी सारा हॉज के अनुसार इन समूहों में शावक नेवलों का जल्दी या देर से जन्म लेना, दोनों ही खतरनाक हो सकते हैं। जल्दी जन्म लेने वाले नवजात नेवले अन्य मादा नेवलों के लिए आसान शिकार बन जाते हैं। ये मादाएं इन नन्हे नेवलों को अपनी आने वाली संतान के लिए बाधा मानती हैं। दूसरी ओर, देर से जन्म लेने वाले नेवलों के जीवित रहने की संभावना कम हो जाती है क्योंकि उनको भोजन के लिए अधिक प्रतिस्पर्धा का सामना करना होता है और समूह के अन्य वयस्क नेवलों की देखभाल भी नहीं मिलती।

अध्ययन के दौरान शोधकर्ताओ ने शिशुओं के जन्म के समय का वज़न भी नियंत्रित किया। इसके लिए उन्होंने कुछ गर्भवती नेवलों को गर्भावस्था के दौरान अतिरिक्त भोजन दिया। यह देखा गया कि सुपोषित मादाओं ने अपने तंदुरुस्त बच्चों की बजाय कम भोजन प्राप्त मादा नेवलों के कम वज़न वाले बच्चों का ज़्यादा ध्यान रखा – उन्हें दूध पिलाया, देखभाल की और रक्षा की। यानी साथ-साथ बच्चे पैदा होने से कमज़ोर बच्चों को कुछ फायदा तो मिलता है।    

वैज्ञानिकों को लगता है कि इस उत्कृष्ट तालमेल में फेरेमोन की भूमिका हो सकती है।

युगांडा स्थित क्वीन एलिज़ाबेथ नेशनल पार्क में नेवलों (मंगोस मंगो) के 11 समूहों पर लगभग सात वर्ष लंबा अध्ययन किया गया। इस अध्ययन में युनिवर्सिटी ऑफ एक्सेटर के प्रोफेसर माइकल केंट और उनके सहयोगियों ने कुछ मादाओं को अल्प अवधि के गर्भनिरोधक देकर निर्धारित किया कि कौन-सी मादाएं संतान का योगदान करेंगी। वैज्ञानिकों का निष्कर्ष है कि यदि प्रभावशाली मादाएं समूह में संतान का योगदान नहीं कर पाती हैं तो वे सभी नवजात नेवलों को मार देती हैं। लेकिन यदि उन्हें लगता है कि इन नवजात नेवलों में उनकी संतानें भी हैं, तो वे उन सबको बख्श देती हैं।

निष्कर्ष बताते हैं कि कशेरुकियों के बीच सहयोग के विकास में इस तरह की रणनीतियों की महत्वपूर्ण भूमिका है। इससे यह भी पता चलता है कि जनसंख्या नियंत्रण में अन्य मादाओं के नवजात शिशुओं की हत्या एक महत्वपूर्ण प्रतिकूल रणनीति हो सकती है। वैज्ञानिकों के अनुसार कई सामाजिक स्तनधारियों में एक प्रमुख मादा प्रजनक होती है। इन नेवलों में लगभग 12 मादाएं एक साथ गर्भवती होती हैं और एक ही दिन जन्म देने के लिए तालमेल बनाती हैं। केंट बताते हैं कि इस प्रयोग में मादा नेवलों के बीच तालमेल बनाने का मुख्य उद्देश्य प्रजनन में इस तरह की जानलेवा घटनाओं को टालना है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_large/public/Mongoose_1280x720.jpg?itok=BxHNcsqW

मल जीवाश्म में गुबरैले की नई प्रजाति

गुबरैले हर जगह पाए जाते हैं और लगभग हर रोज़ एक नई प्रजाति का पता चलता है। अब इनकी एक प्रजाति अजीबोगरीब जगह पर मिली है: डायनासौर के मल का जीवाश्म। पूरी तरह से सुरक्षित यह गुबरैला 23 करोड़ वर्ष पूर्व पाया जाता था। इसे नाम दिया गया है ट्राएमिक्सा कोप्रोलिथिका। पहली बार कोई संपूर्ण कीट मल के जीवाश्म (कोप्रोलाइट) में पाया गया गया है।

विश्व भर के संग्रहालयों और शोध संग्रहों में कोप्रोलाइट्स बड़ी संख्या में हैं। लेकिन कुछेक वैज्ञानिकों ने ही कोप्रोलाइट्स का विश्लेषण उनमें उपस्थित पदार्थों के लिहाज़ से किया है। मान्यता यह है कि इतने छोटे कीड़ों का पाचन तंत्र से साबुत गुज़रकर मल में पहचानने योग्य रूप में मिल पाना संभव नहीं है। अब तक जीवाश्म वैज्ञानिकों को कीटों के बारे में अधिकांश जानकारी एम्बर या रेज़िन जीवाश्मों से हासिल होती थी जो बदकिस्मती से इनमें फंस जाते थे। देखा जाए ये जीवाश्म अधिक पुराने नहीं होते; ऐसा सबसे प्राचीन जीवाश्म 14 करोड़ वर्ष पुराना है।    

कोप्रोलाइट्स में कीट अवशेषों के बारे में पता लगाने के लिए उपसला युनिवर्सिटी के जीवाश्म विज्ञानी मार्टिन क्वार्नस्टॉर्म और उनके सहयोगियों ने पोलैंड के उस क्षेत्र के कोप्रोलाइट्स का अध्ययन किया जिसे 23 करोड़ वर्ष पुराने ट्राएसिक काल से सम्बंधित माना जाता है। इस अध्ययन में शोधकर्ताओं ने कोप्रोलाइट का एक दो सेंटीमीटर का टुकड़ा चुना जो एक बड़े कोप्रोलाइट का टुकड़ा रहा होगा। सिंक्रोट्रॉन की मदद से इस पर तीव्र एक्स-रे किरणों की बौछार की और घुमा-घुमाकर उसका 3-डी मॉडल तैयार किया। नमूने में कीट उपस्थित थे – भलीभांति संरक्षित और पूर्ण रूप में। करंट बायोलॉजी में प्रकाशित रिपोर्ट के अनुसार इन कीटों का आकार 1.4 मिलीमीटर था। सिर, एंटीना और पैर के अंश भी दिखे।

यह मल संभवत: लगभग 2.3 मीटर लंबे चोंचवाले डायनासौर साइलेसौरस ओपोलेंसिस का है। कोप्रोलाइट एक ऐसा सूक्ष्म-वातावरण प्रदान करते हैं जहां मुलायम ऊतकों सहित कार्बनिक पदार्थ संरक्षित रहते हैं। ये जीवाश्म दबकर चपटे भी नहीं होते। इस अध्ययन में शामिल नेशनल सन येट-सेन युनिवर्सिटी के कीट विज्ञानी मार्टिन फिकासे के अनुसार यह विलुप्त गुबरैला मिक्सोफैगा नामक समूह से सम्बंधित हैं जो नम इलाकों में शैवाल पर पनपता था। शोधकर्ताओं की टीम ने उदर के भागों की संख्या या एंटीना की स्थिति जैसी  विशेषताओं के आधार पर इसे आधुनिक मिक्सोफैगा समूह में रखा है जिसके चार वंश आज भी जीवित हैं। वैसे आज तक कोई ऐसा जीवाश्म नहीं मिला था कि उसके आधार पर प्रजाति, वंश और परिवार के बारे में कुछ कहा जा सके।

इन नमूनों की मदद से पुनर्निर्मित तस्वीरों और मॉडलों से गुबरैले की न केवल नई प्रजाति का पता चला है बल्कि इसके भोजन और उन जीवों के वातावरण की जानकारी भी प्राप्त हुई है जिन्होंने इस कीट का भक्षण किया था। इस जानकारी से वैज्ञानिकों को प्राचीन खाद्य संजाल और प्राचीन डायनासौर के पारिस्थितिकी तंत्र को समझने में भी मदद मिल सकती है। शुरुआती और बाद के ट्राएसिक युग के कोप्रोलाइट्स के अध्ययन से कीट विकास के बारे में भी जानकारी मिलने की उम्मीद है। वैज्ञानिकों को अभी तक इसके विलुप्ति के कारणों की कोई जानकारी नहीं मिली है जबकि इसके निकटतम सम्बंधी आज भी जीवित हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://i.dailymail.co.uk/1s/2021/06/30/15/44868935-0-image-a-51_1625062324496.jpg

पौधे और कीट के बीच जीन का स्थानांतरण

सेल पत्रिका में प्रकाशित एक शोध पत्र में एक पौधे और कीट के बीच जीन हस्तांतरण का मामला रिपोर्ट हुआ है। मामला यह है कि एक सफेद मक्खी (व्हाइटफ्लाई, बेमिसिया टेबेकी) जिन पौधों से पोषण लेती है, उनमें से एक पौधे से एक जीन सफेद मक्खी में स्थानांतरित हुआ है। यह जीन (BtPMaT1) कीट को फिनॉलिक ग्लायकोसाइड समूह के रसायनों से सुरक्षा प्रदान करता है। कई पौधे कीटों के हमले से स्वयं की रक्षा के लिए ये रसायन बनाते हैं। यह जीन मिल जाने के बाद यह मक्खी इस पौधे को बगैर किसी नुकसान के खा सकती है।

अलग-अलग प्रजातियों के बीच आपस में लैंगिक प्रजनन के बिना जीन्स का लेन-देन क्षैतिज जीन स्थानांतरण कहलाता है। क्षैतिज जीन स्थानांतरण पूर्व में एक-कोशिकीय जीवों, तथा कवक व गुबरैलों जैसे कुछ बहुकोशिकीय जीवों में भी देखा गया था। यह कई तरीकों से हो सकता है। एक तो आनुवंशिक सामग्री किसी वायरस के माध्यम से एक से दूसरे जीव में स्थानांतरित हो सकती है, वहीं कुछ जीव पर्यावरण में मुक्त पड़े डीएनए भी ग्रहण कर सकते हैं।

सफेद मक्खियां पौधों में बीमारियां फैलाती हैं और फसलों को तबाह भी कर डालती हैं। इसलिए चाइनीज़ एकेडमी ऑफ एग्रीकल्चर साइंसेज़ के यूजुन झैंग और उनके साथी यह समझना चाह रहे थे कि पौधों द्वारा अपने बचाव में रुाावित रसायनों से सफेद मक्खियां कैसे बच निकलती हैं।

यह जानने के लिए शोधकर्ता सफेद मक्खी के जीनोम में उस जीन की तलाश कर रहे थे जो उसे पौधों द्वारा छोड़े गए कीटनाशक के खिलाफ लड़ने में मदद करता है। सफेद मक्खियों के जीनोम की तुलना उन्होंने उन अन्य कीटों के जीनोम से की जो इन पौधों के विषाक्त रसायनों को झेल नहीं पाते थे और मर जाते थे। उन्हें BtPMaT1 नामक जीन मिला जो इसी कीट में है और एक ऐसा प्रोटीन बनाता है जो फिनॉलिक ग्लायकोसाइड को बेअसर कर देता है।

इसके बाद, शोधकर्ताओं ने नेशनल सेंटर फॉर बायोटेक्नॉलॉजी इंफॉर्मेशन डैटाबेस का उपयोग कर इस जीन के विकास के बारे में पता किया। उन्हें किसी भी अन्य कीट में यह जीन या इसके समान कोई अन्य जीन नहीं मिला। इसका मतलब है कि सफेद मक्खी में यह जीन कहीं और से आया था।

आखिरकार, उन्हें एक ऐसा जीन मिल गया। लेकिन वह जीन किसी कीट में न होकर पौधे में था। शोधकर्ताओं का अनुमान है कि साढ़े तीन करोड़ वर्ष पहले किसी वायरस ने पौधे में उस जीन का भक्षण कर लिया होगा और किसी सफेद मक्खी ने उस वायरस-संक्रमित पौधे को खा लिया होगा। वायरस ने वह जीन सफेद मक्खी के जीनोम में स्थानांतरित कर दिया होगा, जहां से वह सफेद मक्खी की पूरी आबादी में आ गया होगा। यह दर्शाता है कि अन्य जीवों से स्थानांतरित हुए जीन किसी जीव को बेहतर तरीके से जीवित रहने में मदद कर सकते हैं।

इसके बाद शोधकर्ताओं ने सफेद मक्खियों में BtPMaT1 जीन को निष्क्रिय करने की योजना बनाई। इसके लिए उन्होंने विषैले टमाटर के पौधों को जेनेटिक रूप से संशोधित कर ऐसी व्यवस्था की कि वे एक ऐसा आरएनए बनाने लगें जो BtPMaT1  को निष्क्रिय कर देता है। जब सफेद मक्खियों ने टमाटर के इन पौधों को खाया तो जीन के काम न कर पाने के कारण वे मारी गर्इं। उक्त जीन से रहित एक अन्य कीट को जब ये पौधे खिलाए गए तो उनकी मृत्यु दर अपरिवर्तित रही। इससे लगता है कि ऐसे पौधे विकसित किए जा सकते हैं जो सफेद मक्खियों के लिए हानिकारक हों लेकिन अन्य प्रजातियों को नुकसान न पहुंचाएं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.nature.com/lw800/magazine-assets/d41586-021-00782-w/d41586-021-00782-w_18990036.jpg

एक नई गैंडा प्रजाति के जीवाश्म

हाल ही में उत्तर-पश्चिमी चीन के गान्सु प्रांत में पाए गए जीवाश्मों से विशाल गैंडा की एक नई प्रजाति पहचानी गई है। यह प्रजाति लगभग 2.65 करोड़ वर्ष पूर्व ओलिगोसीन युग के दौरान पाई जाती थी। नई प्रजाति (पैरासेराथेरियम लिनज़िएंज़) विलुप्त हो चुके सींगरहित गैंडा वंश से सम्बंधित है।

विशाल गैंडे को पृथ्वी के अब तक के सबसे बड़े स्तनधारियों में गिना जाता है। चाइनीज़ एकेडमी ऑफ साइंस के प्रोफेसर टाओ डेंग और उनके सहयोगियों के अनुसार इसकी खोपड़ी और पैर अब तक ज्ञात सभी स्तनधारियों की तुलना में लंबे हैं लेकिन इसके पैर की बड़ी हड्डी बहुत विशाल नहीं है।

डेंग आगे बताते हैं कि इस जीव का आकार आर्द्र या शुष्क जलवायु वाले खुले जंगली क्षेत्रों के लिए उपयुक्त था। पूर्वी युरोप, एनाटोलिया और कॉकेशस में पाए गए कुछ अवशेषों को छोड़कर, विशाल गैंडे मुख्य रूप से एशिया में चीन, मंगोलिया, कज़ाकस्तान और पाकिस्तान के क्षेत्रों में रहते थे। गौरतलब है कि मध्य इओसीन युग से ओलिगोसीन युग के अंत तक विशाल गैंडे के सभी छह वंश चीन के उत्तर-पश्चिम से दक्षिण-पश्चिम क्षेत्रों में पाए जाते थे। इनमें पैरासेराथेरियम वंश के गैंडे सबसे अधिक संख्या में थे। इनकी उपस्थिति के अधिकांश प्रमाण पूर्वी और मध्य एशिया के क्षेत्रों में मिले हैं जबकि पूर्वी युरोप और पश्चिमी एशिया में इनके खंडित नमूने प्राप्त हुए हैं। केवल तिब्बती पठार के दक्षिण-पश्चिमी क्षेत्र में पैरासेराथेरियम बगटिएन्स प्रजाति के पर्याप्त और स्पष्ट प्रमाण प्राप्त हुए हैं।

गौरतलब है कि पैरासेराथेरियम लिनज़िएंज़ के जीवाश्मों में एक पूर्ण खोपड़ी, कुछ रीढ़ की हड्डियां और जबड़े की हड्डी प्राप्त हुए हैं। विश्लेषण से पता चला है कि पैरासेराथेरियम लिनज़िएंज़ अपने वंश की सबसे विकसित प्रजाति थी। 

कम्युनिकेशन्स बायोलॉजी में प्रकाशित नतीजों के अनुसार ओलिगोसीन युग की शुरुआत में पैरासेराथेरियम प्रजातियां पश्चिम की ओर कज़ाकस्तान की ओर फैली जबकि इनके वंशजों का विस्तार दक्षिण एशिया में हुआ। इसके बाद ओलिगोसीन युग के आगे के दौर में पैरासेराथेरियम तिब्बती क्षेत्र को पार करते हुए उत्तर की ओर लौटे और पश्चिम में कज़ाकस्तान में पूर्व में लिंज़िया घाटी की ओर उभरे। गौरतलब है कि ओलिगोसीन युग के आखरी दौर की उष्णकटिबंधीय परिस्थितियों ने विशालकाय गैंडे को मध्य एशिया की ओर आकर्षित किया जो इस बात के संकेत देता है कि उस समय तक तिब्बत का क्षेत्र ऊंचे पठार के रूप में विकसित नहीं हुआ था। अनुमान है कि ओलिगोसीन युग के दौरान, विशाल गैंडे शायद तिब्बत को पार करते हुए या टेथिस महासागर के पूर्वी तट के रास्ते मंगोलियाई पठार से दक्षिण एशिया तक फैले थे। इस विशाल गैंडे के तिब्बती क्षेत्र पार करके भारत-पाकिस्तान उपमहाद्वीप तक पहुंचने के अन्य साक्ष्य मौजूद हैं। एक बात तो साफ है कि तिब्बत का पठार उस समय तक इन बड़े स्तनधारी जीवों के विचरण में बाधा नहीं बना था। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://images.hindustantimes.com/img/2021/06/19/550×309/2021-06-18T084343Z_895496993_RC2BBN9VS832_RTRMADP_3_CHINA-FOSSIL_1624083953013_1624083966584.JPG

वायरस का तोहफा है स्तनधारियों में गर्भधारण – स्निग्धा मित्रा

न दिनों कोरोनावायरस सुर्खियों में है। इसने लाखों लोगों को बीमार कर दिया है और कई लाख लोगों की जान ले ली है। लेकिन तस्वीर का एक दूसरा पहलू भी है। वायरसों ने जीव जगत में सहयोग व सहकार की भूमिका भी अदा की है। और सहयोग व सहकार केवल थोड़े समय के लिए नहीं बल्कि हमेशा-हमेशा के लिए। उन्होंने जीवों में घुसपैठ कर उनकी कोशिकाओं में अपने जीन्स छोड़ दिए हैं जिनकी बदौलत उन प्रजातियों के विकास की दिशा बदल गई।

दिलचस्प बात है कि स्तनधारी आज अपने वर्तमान रूप में वायरस की बदौलत ही हैं। अगर वायरस स्तनधारियों में घुसपैठ न करते तो शायद हम आज भी अंडे दे रहे होते। आज के स्तनधारी तो हरगिज नहीं होते जो अपने बच्चे को गर्भ में सहेजकर रखते हैं। गर्भधारण के लिए ज़रूरी बीजांडासन (प्लेसेंटा) वायरस की ही देन है।

हम जानते हैं कि स्तनधारी समूह के एक बड़े वर्ग – चूहे, चमगादड़, व्हेल, हाथी, छछूंदर, कुत्ते, बिल्ली, भेड़, मवेशी, घोड़ा, कपि, बंदर व मनुष्य में प्लेसेंटा पाया जाता है। प्लेसेंटा एक तश्तरीनुमा संरचना है जो एक ओर गर्भाशय से जुड़ा होता है और दूसरी ओर भ्रूण से -एक रस्सीनुमा रचना नाभि-रज्जू (अम्बलिकल कॉर्ड) के माध्यम से।

प्लेसेंटा एक ऐसी व्यवस्था है जो गर्भ में पल रहे बच्चे को वहां एक नियत अवधि तक टिके रहने में अहम भूमिका अदा करती है। मनुष्य में बच्चा लगभग नौ माह तक मां के गर्भ में रहता है। इस दौरान उसे ऑक्सीजन व पोषण चाहिए जो प्लेसेंटा के ज़रिए ही मां से उपलब्ध होता है। गर्भस्थ शिशु के उत्सर्जित पदार्थ भी प्लेसेंटा द्वारा ही हटाए जाते हैं। प्लेसेंटा बच्चे के विकास को प्रेरित करता है। यह बच्चे को कई तरह के संक्रमणों से भी बचाता है। यह दिलचस्प है कि गर्भावस्था के दौरान मां को होने वाली अधिकांश बीमारियों से गर्भ में पल रहा बच्चा सुरक्षित रहता है। प्लेसेंटा कई मायनों में बच्चे व मां के बीच एक अवरोध का भी काम करता है। और सबसे बड़ी बात तो यह है कि प्लेसेंटा की बदौलत ही मां का शरीर भ्रूण को पराया मानकर उस पर हमला नहीं करता। भ्रूण इस मायने में पराया होता है कि उसके आधे जीन तो पिता से आए हैं।

सवाल यह है कि मादा स्तनधारी में अंडे के निषेचन के बाद प्लेसेंटा के निर्माण के लिए कौन-से जीन्स ज़िम्मेदार हैं? इस सवाल का जवाब वे वायरस देते हैं जिन्होंने लाखों साल पहले स्तनधारियों के किसी पूर्वज को संक्रमित किया था। उन वायरसों ने संक्रमित जंतुओं की जान नहीं ली, बल्कि उनकी कोशिकाओं में जाकर बैठ गए। मज़े की बात यह है कि वायरस मेज़बान की कोशिका के जीनोम का हिस्सा बन गए व मेज़बान ने उनका फायदा उठाया।

बात 6.5 करोड़ बरस पहले की है। एक छोटा, मुलायम, छछूंदर जैसा निशाचर जीव था। यह आधुनिक स्तनधारी जैसा ही दिखता था। अलबत्ता, उसमें प्लेसेंटा नहीं था। आधुनिक स्तनधारियों का प्लेसेंटा उस छछूंदरनुमा जीव के साथ एक रेट्रोवायरस की मुठभेड़ का नतीजा है।

वायरस की खासियत होती है कि यह किसी सजीव कोशिका में पहुंचकर उसके केंद्रक में अपना न्यूक्लिक अम्ल (यानी जेनेटिक पदार्थ) डाल देता है। वायरस का न्यूक्लिक अम्ल मेज़बान कोशिका के जेनेटिक पदार्थ डीएनए को निष्क्रिय कर देता है और खुद कोशिका पर नियंत्रण कर लेता है। अब उस जीव की कोशिका पर वायरस की ही सल्तनत होती है। वायरस उस कोशिका में अपनी प्रतिलिपियां बनाने लगता है।

रेट्रोवायरस एक प्रकार के वायरस हैं जो आनुवंशिक सामग्री के रूप में आरएनए का इस्तेमाल करते हैं। कोशिका को संक्रमित करने के बाद रेट्रोवायरस अपने आरएनए को डीएनए में बदलने के लिए रिवर्स ट्रांसक्रिप्टेज़ नामक एंज़ाइम का इस्तेमाल करते हैं। रेट्रोवायरस तब अपने वायरल डीएनए को मेज़बान कोशिका के डीएनए में एकीकृत कर देता है। एड्स वायरस रेट्रोवायरस ही है।

आज के स्तनधारियों के पूर्वज के शुक्राणु या अंडाणुओं में वायरस के जीन्स पहुंच गए और फिर हर पीढ़ी में पहुंचने में कामयाब हो गए। इस तरह से वायरस पूरी तरह से मेज़बान के जीनोम का हिस्सा बन गए। जीनोम अध्ययन से पता चलता है कि मानव के जीनोम में वायरसों के लगभग एक लाख ज्ञात अंश हैं जो हमारे कुल डीएनए के आठ फीसदी से अधिक है। यानी हम आठ फीसदी वायरस से बने हुए हैं।

जब कोई वायरस अपने जीनोम को मेज़बान के साथ एकीकृत करता है तो नए संकर जीनोम बनते हैं तथा वह कोशिका मर जाती है। लेकिन कभी-कभी अनहोनी घट सकती है। मसलन अगर शुक्राणु या अंडाणु वायरस से संक्रमित होकर निषेचित हो जाएं तो अगली पीढ़ियों में वायरल जीनोम की एक प्रति होगी। इसे वैज्ञानिक अंतर्जात रेट्रोवायरस कहते हैं।

प्रारंभिक स्तनधारियों में वायरस के उन कबाड़ में पड़े हुए जीन्स का इस्तेमाल प्लेसेंटा बनाने में किया जाने लगा जो आज भी जारी है। सिंसिटिन जीन जो रेट्रोवायरस के जीनोम का हिस्सा था वह लाखों बरस पहले स्तनधारी के पूर्वजों में घुसपैठ कर चुका है। यह स्तनधारियों में गर्भधारण के लिए बेहद अहम है।

मूल रूप से सिंसिटिन नामक प्रोटीन वायरस को मेज़बान कोशिका के साथ जुड़ने में मदद करता है। बेशक, सिंसिटिन प्राचीन वायरस की देन है जो गर्भावस्था के दौरान प्लेसेंटा की कोशिकाओं में अभिव्यक्त होता है। सिंसिटिन मात्र वही कोशिकाएं बनाती हैं जो भ्रूण और गर्भाशय की संपर्क सतह पर होती हैं। ये आपस में जुड़कर एक-कोशिकीय परत बना लेती हैं व भ्रूण अपनी मां से इसके ज़रिए आवश्यक पोषण प्राप्त करता है। वैज्ञानिकों ने पता लगाया है कि इस जुड़ाव के लिए सिंसिटिन का बनना अनिवार्य है। सिंसिटिन का जीन मूलत: वायरस का जीन है।

यह दिलचस्प है कि सिंसिटिन प्रोटीन का जीन विकासक्रम में स्तनधारियों के जीनोम में बना रहा। सिंसिटिन तब प्रकट होता है जब कोई पराई चीज़ आक्रमण करे। स्वाभाविक है कि अंडाणु को निषेचित करने वाला नर का शुक्राणु मादा के लिए पराया होता है। जब निषेचित अंडा गर्भाशय में आता है, तब सिंसिटिन प्रोटीन का निर्माण ब्लास्टोसिस्ट की बाहरी परत की कोशिकाएं करती हैं व भ्रूण को गर्भाशय की दीवार से चिपकने का रास्ता आसान बनाती है।

स्तनधारियों में सिंसिटिन का निर्माण करने वाले जीन आम तौर पर सुप्तावस्था में पड़े रहते हैं। जब गर्भधारण की स्थिति बनती है तब ये जागते हैं और सिंसिटिन के निर्माण का सिलसिला शुरू होता है। सिंसिटिन प्रोटीन प्लेसेंटा व मातृ कोशिका के बीच सीमाओं को निर्धारित करता है। अंड कोशिका के निषेचन के लगभग एक सप्ताह बाद भ्रूण एक गोल खोखली गेंदनुमा रचना (ब्लास्टोसिस्ट) में विकसित हो जाता है व गर्भाशय में रोपित होकर प्लेसेंटा के निर्माण को उकसाता है। यही प्लेसेंटा भ्रूण को ऑक्सीजन और पोषण उपलब्ध कराता है। ब्लोस्टोसिस्ट की बाहरी परत की कोशिकाएं प्लेसेंटा की बाहरी परत का निर्माण करती हैं और जो कोशिकाएं गर्भाशय से सीधे संपर्क में होती हैं वे सिंसिटिन प्रोटीन का निर्माण करती हैं।

कोशिकाओं में काफी कबाड़ डीएनए होता है और एक कबाड़ डीएनए में ज़्यादातर हिस्सा सहजीवी वायरसों का है। एक तरह से डीएनए के ये टुकड़े मानव और वायरस के बीच की सीमा को धुंधला करते हैं। इस नज़रिए से मनुष्य आंशिक रूप वायरस की ही देन हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.mdpi.com/viruses/viruses-12-00005/article_deploy/html/images/viruses-12-00005-g001.png

एकाकी उदबिलाव बहुत ‘वाचाल’ हैं

वैसे तो मध्य और दक्षिण अमेरिका में पाए जाने वाले उदबिलाव एकाकी होते हैं लेकिन हाल ही के अध्ययन में पता चला है कि वे खूब बड़बड़ाते रहते हैं। वे विभिन्न तरह से किंकियाकर और गुर्राकर आश्चर्य से लेकर प्रसन्नता तक व्यक्त करते हैं। इन नतीजों से यह पता लगाने में मदद मिल सकती है कि उदबिलावों में संवाद-संचार कैसे विकसित हुआ। इसके अलावा यह अध्ययन इन लुप्तप्राय जानवरों के संरक्षण में भी मदद कर सकता है।

सभी उदबिलाव गुर्राकर और चिंचियाकर संवाद करते हैं। कुछ सामाजिक उदबिलाव, जैसे अमेज़न के विशाल उदबिलाव (Pteronura brasiliensis), 22 अलग-अलग तरह की आवाज़ें निकालते हैं। दूसरी ओर, नॉर्थ अमेरिकी नदीवासी उदबिलावों (Lontra canadensis) जैसे कुछ एकाकी प्रवृत्ति के उदबिलावों में संवाद के केवल चार तरीके ज्ञात हैं। लेकिन नियोट्रॉपिकल नदीवासी उदबिलावों (L. longicaudis) में संवाद का अध्ययन मुश्किल रहा है, क्योंकि ये वर्ष में एक बार ही प्रजनन के लिए साथ आते हैं।

इसलिए इन उदबिलावों में संचार-संवाद का अध्ययन करने के लिए विएना विश्वविद्यालय की जैव ध्वनिकीविद सबरीना बेटोनी ने तीन जोड़ी नियोट्रॉपिकल नदीवासी उदबिलावों का साल भर अध्ययन किया। ये उदबिलाव ब्राज़ील तट के निकट कैटरिना टापू पर एक शरण-स्थल में नर-मादा जोड़ियों के रूप में रखे गए थे। बेटोनी ने उनके द्वारा निकाली गई हर आवाज़ को रिकॉर्ड किया, और उनकी ध्वनि तरंगों का विश्लेषण करके उनका वर्गीकरण किया। इसके अलावा उन्होंने तीन महीने तक इन उदबिलावों पर नज़र भी रखी ताकि यह समझ सकें कि वे किन परिस्थितियों में किस तरह की आवाज़ निकालते हैं।

प्लॉस वन पत्रिका में उन्होंने बताया है कि वे विभिन्न व्यवहारों के लिए छह तरह की आवाज़ें निकालते हैं। जब वे मनुष्यों या अन्य जानवरों का ध्यान अपनी ओर खींचना चाहते हैं तो वे हल्का से चिंचियाते हैं। भोजन या दुलार की विनती करने के लिए वे धीमे से कुड़कुड़ाते हैं। खेलने के दौरान वे किंकियाते हैं। जब कुछ नया होते देखते हैं (जैसे भोजन लेकर आता व्यक्ति) तो वे अपने पिछले पैरों पर खड़े होकर सांस छोड़ने जैसी ‘हाह’ की आवाज़ निकालते हैं। इसके अलावा, लड़ाई के समय या अपने भोजन की सुरक्षा में वे गुर्राते हैं।

नियोट्रॉपिकल नदीवासी उदबिलाव की ये आवाज़ें सिर्फ उनकी ही प्रजाति तक सीमित नहीं हैं। इनमें से कुछ तरह की आवाज़ें, जैसे हाह या चिंचियाने की, पूरी तरह से भिन्न वातावरण में रहने वाले और भिन्न आनुवंशिक विशेषताओं वाले उदबिलावों में भी हैं। विभिन्न प्रजातियों में ध्वनियों की समानता देख कर लगता है कि ये ध्वनियां इनके साझा पूर्वज में मौजूद थीं। शोधकर्ता आगे जानना चाहते हैं कि वाणि-उत्पादन कैसे विकसित हुआ होगा। अन्य शोधकर्ता चेताते हैं कि संभवत: जंगली उदबिलाव कैद में रखे उदबिलावों जैसी ध्वनि न निकालते हों।

बहरहाल, उम्मीद है कि इस काम से उदबिलावों के संरक्षण में मदद मिलेगी। इस प्रजाति को लुप्तप्राय घोषित किया गया है। आवाज़ों की मदद से इन्हें एक जगह बुलाकर गिनती की जा सकेगी। और वैसे भी यह अध्ययन लोगों को इनके प्रति आकर्षित तो करेगा ही। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdnph.upi.com/ph/st/th/5871621953986/2021/i/16219658441310/v2.1/Brazils-neotropical-otter-uses-a-wide-vocal-range-researchers-say.jpg?lg=4