विज्ञान नीति और कोरोना टीका बनाने की ओर बढ़ा भारत – चक्रेश जैन

विदा हो चुका वर्ष 2020 भारतीय विज्ञान जगत के लिए नई चुनौतियों और अपेक्षाओं का रहा। अदृश्य कोरोनावायरस से फैली कोविड-19 महामारी का विभिन्न क्षेत्रों में व्यापक प्रभाव दिखाई दिया। साल के पूर्वार्ध में वैज्ञानिकों ने नए कोरोनावायरस (सार्स-कोव-2) का जीनोम अनुक्रम पता करने में सफलता प्राप्त की। इसी के साथ देश में ही टीका बनाने का मार्ग प्रशस्त हुआ। दरअसल किसी भी रोग से जंग के लिए टीकों का विकास बेहद जटिल और परीक्षणों के कई चरणों से गुज़रने वाली लंबी अनुसंधान प्रक्रिया है। लेकिन वैज्ञानिकों ने प्रयोगशालाओं में रात-दिन एक कर वर्ष के अंत तक कोविड-19 का टीका बनाकर अपनी कुशलता का परिचय दिया।

वैज्ञानिक एवं औद्योगिक अनुसंधान परिषद के झंडे तले कार्यरत तीन प्रयोगशालाओं – हैदराबाद स्थित सेंटर फॉर सेल्यूलर एंड मॉलीक्युलर बायोलॉजी, नई दिल्ली स्थित इंस्टीट्यूट ऑफ जीनोमिक्स एंड इंटीग्रेटिव बायोलॉजी और चंडीगढ़ स्थित इंस्टीट्यूट ऑफ माइक्रोबियल टेक्नोलॉजी के अनुसंधानकर्ताओं ने सार्स-कोव-2 का जीनोम अनुक्रम तैयार किया, जिसका उद्देश्य वायरस की उत्पत्ति और उसके बदलते स्वरूपों का पता लगाकर टीका निर्माण की राह बनाना था।

गुज़रे साल में देश की पांचवी विज्ञान, प्रौद्योगिकी और नवाचार नीति-2020 (एसटीआईपी) का प्रारूप तैयार किया गया। देश में शोध और विकास को मूर्त रूप देने में विज्ञान और प्रौद्योगिकी नीतियों की महत्वपूर्ण भूमिका रही है। गौरतलब है कि स्वतंत्रता के बाद पहली विज्ञान नीति का निर्माण 1958 में किया गया था। वर्ष 2020 में बनाई जा रही नई विज्ञान नीति में आत्मनिर्भर भारत के विचार को केंद्र में रखकर स्वदेशी प्रौद्योगिकी, महिलाओं और पंचायतों के सशक्तिकरण पर ध्यान केंद्रित किया गया है। विज्ञान मंत्रालय ने पहली बार नई विज्ञान नीति निर्माण में राज्यों की विज्ञान परिषदों सहित लगभग 15,000 लोगों की राय ली। नई विज्ञान नीति में स्थानीय से वैश्विक नवाचारों, आवश्यकता आधारित प्रौद्योगिकी तैयार करने और सतत विकास को बढ़ावा देने की कोशिश की गई है।

हैदराबाद स्थित सेंटर फॉर सेल्यूलर एंड मॉलीक्युलर बायोलॉजी के अनुसंधानकर्ताओं को ततैया का जीनोम अनुक्रमण करने में सफलता मिली। ततैया का वैज्ञानिक नाम लेप्टोफिलिन बोलार्डी है। वैज्ञानिकों का कहना है कि ततैया का जीनोम अनुक्रमण ड्रॉसोफिला और ततैया के बीच होने वाले जैविक संघर्ष से सम्बंधित कारणों को समझने में सहायक होगा।

जनवरी में भारतीय विज्ञान कांग्रेस एसोसिएशन का 107वां सालाना जलसा बैंगलुरू में संपन्न हुआ, जिसमें देश-विदेश के वैज्ञानिकों और अनुसंधानकर्ताओं ने ग्रामीण विकास में विज्ञान और प्रौद्योगिकी की भूमिका पर मंथन किया। वैज्ञानिकों का कहना था कि ग्रामीण विकास में प्रौद्योगिकी को व्यापक बनाने की आवश्यकता है। वर्ष 2006 में आयोजित भारतीय विज्ञान कांग्रेस के दौरान समेकित ग्रामीण विकास के विभिन्न मुद्दों पर विमर्श हुआ था।

17 जनवरी को फ्रेंच गुआना प्रक्षेपण केंद्र से जी-सैट संचार उपग्रह को अंतरिक्ष में विदा किया गया। 7 नवंबर को भारतीय अंतरिक्ष अनुसंधान संगठन (इसरो) द्वारा श्रीहरिकोटा से पीएसएलवी-डीएल से दस उपग्रहों को अंतरिक्ष में सफलतापूर्वक भेजा गया। दस उपग्रहों में से नौ विदेशी हैं, जबकि राडार इमेजिंग उपग्रह अर्थ ऑब्जर्वेशन सेटैलाइट-1 स्वदेशी उपग्रह है। यह सामरिक निगरानी के साथ कृषि विज्ञान, वानिकी, भू-विज्ञान, तटीय निगरानी और बाढ़ जैसी आपदाओं के दौरान उपयोगी सिद्ध होगा। अंतरिक्ष विज्ञान की गतिविधियों और कार्यक्रमों में निजी क्षेत्र की सहभागिता के लिए मार्ग प्रशस्त हुआ।

कोरोना महामारी का असर भारत के प्रथम मानव मिशन गगनयान पर भी पड़ा। गगनयान मिशन का प्रक्षेपण अब अगले वर्ष तक होने की उम्मीद है। गगनयान परियोजना में तीन भारतीय वैज्ञानिक भेजे जाएंगे, जो सात दिन अंतरिक्ष में बिताएंगे।

गुज़रे साल वैज्ञानिकों की टीम ने अगस्त में मेघालय में मशरूम की रात में चमकने वाली एक नई प्रजाति रोरीडोमाइसेज़ फायलोस्टेकायडीस खोजी। अंधेरे में यह हरे रंग की रोशनी से जगमगाता है। इसी कारण इसे ल्यूमिनिसेंट मशरूम कहते हैं। मेघालय में मशरूम की अलग-अलग प्रजातियों का पता लगाने के लिए एक प्रोजेक्ट चल रहा है।

इसी वर्ष विज्ञान एवं प्रौद्योगिकी विभाग ने 50 वें वर्ष में प्रवेश किया और स्वर्ण जयंती वर्ष आयोजनों की शुरुआत हुई। विज्ञान एवं प्रौद्योगिकी विभाग की स्थापना 3 मई 1971 को की गई थी। इस विभाग की स्थापना का उद्देश्य देश में वैज्ञानिक गतिविधियों और परियोजनाओं को बढ़ावा देने में नोडल एजेंसी की भूमिका निभाना है।

विज्ञान समागम प्रदर्शनी का समापन 20 मार्च को दिल्ली में हुआ। यह अपने ढंग की अनोखी प्रदर्शनी थी, जिसमें आम लोगों को विज्ञान की प्रगत विधाओं से परिचित होने का मौका मिला। प्रदर्शनी मुम्बई, कोलकाता और बैंगलुरु के बाद दिल्ली पहुंची थी।

साल के उत्तरार्द्ध में भारत हाइपरसोनिक टेक्नोलॉजी प्राप्त करने वाला चौथा देश बन गया। इस तकनीक की सहायता से ध्वनि से छह गुना अधिक रफ्तार वाली मिसाइलें तैयार होंगी।

वर्ष के अंत में पहली बार वर्चुअल माध्यम से इंडिया इंटरनेशनल साइंस फेस्टीवल आयोजित किया गया, जिसमें इस बार 41 गतिविधियां शामिल की गर्इं। पहली बार महोत्सव में कृषि वैज्ञानिक सम्मेलन हुआ, जिसमें खेती-किसानी से सम्बंधित कार्यों के लिए कृत्रिम बुद्धि के उपयोग पर ज़ोर दिया गया। विज्ञान को उत्सव से जोड़ते इस कार्यक्रम की शुरुआत 2015 में नई दिल्ली से हुई थी।

गुज़रे वर्ष भारतीय वैज्ञानिक नेशनल सुपर कंप्यूटिंग मिशन के अंतर्गत देश में ही सुपरकंप्यूटरों की शृंखला तैयार करने में जुटे रहे। अंतरिक्ष, उद्योग और मौसम सम्बंधी पूर्वानुमानों में सुपरकंप्यूटरों की अहम भूमिका है।

10 जुलाई को रीवा अल्ट्रा मेगा सौर परियोजना राष्ट्र को समर्पित की गई। यह विश्व की बड़ी परियोजनाओं में से एक है। यह पहली सौर योजना है, जिसे विश्व बैंक और क्लीन टेक्नोलॉजी फंड से धनराशि मिली है। इस सौर परियोजना से हर साल 15.7 लाख टन कार्बन उत्सर्जन रोका जा सकेगा।

बीते साल ‘अम्फन’ और ‘निसर्ग’ जैसे विनाशकारी तूफान आए, लेकिन उपग्रहों से प्राप्त सटीक पूर्वानुमानों के आधार पर लाखों लोगों का जीवन बचा लिया गया।

विज्ञान के विभिन्न विषयों में मौलिक और उत्कृष्ट अनुसंधान के लिए 14 वैज्ञानिकों को शांतिस्वरूप भटनागर पुरस्कार से सम्मानित किया गया। इनमें दो महिला वैज्ञानिक भी शामिल हैं। अभी तक 560 वैज्ञानिकों को पुरस्कृत किया जा चुका है। इनमें 542 पुरुष और 18 महिला वैज्ञानिक हैं।

इसी वर्ष सितंबर में विख्यात अंतरिक्ष वैज्ञानिक प्रो. सतीश धवन का जन्मशती वर्ष मनाया गया। इसरो ने विभिन्न कार्यक्रम आयोजित किए और अंतरिक्ष में उनके असाधारण योगदान का स्मरण किया। प्रोफेसर धवन का जन्म 25 सितंबर 1920 को हुआ था। प्रोफेसर धवन 1972 में इसरो के अध्यक्ष बने थे।

इसी वर्ष सर पैट्रिक गेडेस द्वारा भारतीय वैज्ञानिक जगदीशचन्द्र बसु पर लिखी किताब के सौ साल पूरे हुए।

विदा हो चुके वर्ष में कोरोनावायरस पर बनाए गए विज्ञान कॉर्टूनों पर केंद्रित किताब बाय बाय कोरोना प्रकाशित हुई। पुस्तक के लेखक जाने-माने वैज्ञानिक और सांइटूनिस्ट डॉ. प्रदीप कुमार श्रीवास्तव हैं। यह विश्व की विज्ञान कॉर्टूनों पर प्रकाशित अपनी तरह की पहली किताब है।

दिसंबर में भारत उन चुनिंदा देशों में शामिल हो गया, जहां चालकरहित मेट्रो ट्रेनों का संचालन हो रहा है। देश में इसकी शुरुआत दिल्ली से हुई। चालकरहित मेट्रो की यात्रा कम्युनिकेशन बेस्ड ट्रेन कंट्रोल सिग्नलिंग सिस्टम पर आधारित है। बीते साल देश में ही तैयार ज़मीन से हवा में प्रहार करने वाली आकाश मिसाइल के निर्यात का मार्ग प्रशस्त हो गया। आकाश मिसाइल लड़ाकू विमानों, क्रूज़ मिसाइलों और ड्रोन पर सटीक निशाना लगा सकती है।

26 जनवरी 2020 को रोटावायरस वैक्सीन के खोजकर्ता और जैव प्रौद्योगिकी विभाग के पूर्व सचिव डॉ. एम.के. भान का निधन हो गया। 13 फरवरी को शांति के लिए नोबेल पुरस्कार से सम्मानित डॉ. राजेंद्र कुमार पचौरी नहीं रहे। उनके नेतृत्व में संयुक्त राष्ट्र के अंतर-सरकारी पैनल ने जलवायु परिवर्तन पर 2007 में नोबेल पुरस्कार प्राप्त किया था। श्री पचौरी आईपीसीसी के अध्यक्ष और टेरी के महानिदेशक रहे। उन्होंने जलवायु परिवर्तन और पर्यावरण से जुड़े संस्थानों में सक्रिय भूमिका निभाई थी। 2001 में पद्मभूषण से सम्मानित किया गया था।

18 अप्रैल 2020 को जाने-माने कृषि विज्ञानी और आनुवंशिकीविद प्रो. वी. एल. चोपड़ा का 83 वर्ष की आयु में देहांत हो गया। उन्होंने भारत में गेहूं की पैदावार बढ़ाने की दिशा में ऐतिहासिक योगदान किया। उन्हें कृषि के क्षेत्र में विशेष योगदान के लिए प्रतिष्ठित बोरलाग अवॉर्ड और 1985 में पद्मभूषण से अलंकृत किया गया था। वे योजना आयोग के सदस्य रहे। उन्होंने भारतीय कृषि अनुसंधान परिषद के महानिदेशक पद को सुशोभित किया। 

इस वर्ष 15 मई को प्रसिद्ध भौतिकीविद डॉ. एस. के. जोशी का निधन हो गया। उन्हें भौतिकी में विशेष योगदान के लिए प्रतिष्ठित शांतिस्वरूप भटनागर पुरस्कार मिला था।

22 जून 2020 को कोलकाता में अमलेंदु बंद्योपाध्याय का 90 वर्ष की आयु में निधन हो गया। उन्होंने खगोल विज्ञान को आम लोगों में लोकप्रिय बनाने में विशेष योगदान दिया था। उन्होंने आठ किताबें और लगभग 2500 लेख लिखे। उन्हें विज्ञान संचार में विशेष योगदान के लिए राष्ट्रीय विज्ञान एवं प्रौद्योगिकी संचार परिषद ने राष्ट्रीय पुरस्कार से सम्मानित किया था।

विख्यात गणितज्ञ सी. एस. शेषाद्रि का 17 जुलाई को 88 वर्ष की आयु में निधन हो गया। उन्हें ‘शेषाद्रि कांस्टेंट’ के लिए अत्यधिक ख्याति मिली। उन्हें पद्मभूषण और शांतिस्वरूप भटनागर पुरस्कार से सम्मानित किया गया था। इसी साल हमने प्रसिद्ध रेडियो खगोलविद प्रो. गोविन्द स्वरूप को खो दिया। सितंबर में विख्यात परमाणु वैज्ञानिक और परमाणु ऊर्जा आयोग के पूर्व निदेशक डॉ. शेखर बसु का निधन हो गया।

इसी वर्ष 7 सितंबर को जाने-माने वैज्ञानिक डॉ. नरेन्द्र सहगल का निधन हो गया। उन्हें विज्ञान संचार के क्षेत्र में विशेष योगदान के लिए अंतर्राष्ट्रीय कलिंग पुरस्कार से सम्मानित किया गया था। उन्होंने भारत में विज्ञान संचार की गतिविधियों के विस्तार में अहम भूमिका निभाई थी। डॉ. सहगल राष्ट्रीय विज्ञान एवं प्रौद्योगिकी संचार परिषद और विज्ञान प्रसार के संस्थापक निदेशक थे।

इसी वर्ष 14 दिसंबर को प्रसिद्ध एयरोस्पेस वैज्ञानिक आर. नरसिंहा का देहांत हो गया। उन्होंने लाइट कॉम्बैट एयरक्रॉफ्ट (एलसीए) और तेजस की डिज़ाइन एवं विकास में अहम भूमिका निभाई थी। प्रो. नरसिंहा को पद्मभूषण से सम्मानित किया गया था।

विज्ञान जगत की अंतर्राष्ट्रीय पत्र-पत्रिकाओं के संपादक मंडल ने इस बार बीते साल को यादगार बनाने वाले व्यक्तियों और अनुसंधान कथाओं का चयन कर एक सूची बनाई है, जिसमें कोविड-19 के टीकों के अनुसंधान और विकास को शामिल किया गया है। हमारे देश के विज्ञान एवं प्रौद्योगिकी मंत्री डॉ. हर्षवर्धन ने इंडिया इंटरनेशनल साइंस फेस्टीवल में अपने संबोधन के दौरान विदा हो चुके साल 2020 को ‘विज्ञान वर्ष’ की संज्ञा दी है।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.technologyforyou.org/wp-content/uploads/2020/04/covid-updates1.jpg

कृत्रिम बुद्धि को भी नींद चाहिए

शीनों की खासियत है कि उन्हें हम मनुष्यों (और अन्य प्राणियों) की तरह सोने की ज़रूरत नहीं पड़ती। लेकिन कैसा हो यदि आपका फ्रिज, कार या अन्य कोई उपकरण कुछ देर की नींद चाहे। ऐसा हो भी सकता है यदि इन उपकरणों में बिल्कुल मानव मस्तिष्क के समान कृत्रिम बुद्धि (आर्टिफीशियल इंटेलीजेंस) हो। लॉस अलामोस नेशनल लेबोरेटरी के शोधकर्ताओं का कहना है कि आर्टिफिशियल इंटेलीजेंस को भी ठीक से काम करते रहने के लिए थोड़ी नींद की ज़रूरत होती है।

इस ज़रूरत का पता शोधकर्ताओं को तब चला जब वे एक ऐसा न्यूरल नेटवर्क तैयार कर रहे थे जो बिल्कुल जीवित मस्तिष्क की तरह काम करता हो। वे न्यूरल नेटवर्क को मनुष्यों और अन्य जीवों की तरह सीखने के लिए तैयार कर रहे थे, जिसमें उन्होंने नेटवर्क को बगैर किसी पूर्व डैटा या प्रशिक्षण के वस्तुओं को वर्गीकृत करने के लिए तैयार किया। ठीक वैसे ही जैसे यदि कोई किसी छोटे बच्चे को कुछ जानवरों की तस्वीरें देकर समूह बनाने कहे तो वह बना देगा हालांकि वह उनके नाम नहीं जानता। बच्चा हिरण जैसे जानवरों की तस्वीर हिरण के साथ रखेगा, शेर या पेंगुइन के साथ नहीं।

शोधकर्ताओं ने देखा कि लगातार इस तरह का वर्गीकरण करते रहने से नेटवर्क अस्थिर हो गया था। नेटवर्क की हालत लगभग मतिभ्रम की समस्या जैसी हो गई थी जिसमें वह बहुत सारी छवियां बनाए जा रहा था। शुरुआत में शोधकर्ताओं ने नेटवर्क को स्थिर करने के विभिन्न प्रयास किए। उन्होंने नेटवर्क को कई तरह के संख्यात्मक शोर का अनुभव कराया जो कुछ वैसा था जैसा रेडियो की चैनल बदलते वक्त बीच में खर-खर की आवाज़ होती है। थक-हार कर शोधकर्ताओं ने जब नेटवर्क को उन तरंगों का अनुभव कराया जो बिल्कुल वैसी ही थीं जैसे नींद के वक्त हमारा मस्तिष्क अनुभव करता है तो नेटवर्क स्थिर हो गया। उन्हें सबसे अच्छा परिणाम तब मिला जब इस शोर में विभिन्न आवृत्तियों और आयाम की तरंगे थीं। न्यूरल नेटवर्क के लिए यह अनुभव वैसा ही था जैसे उसे एक अच्छी और लंबी नींद दी गई हो। इन परिणामों से लगता है कि कृत्रिम और प्राकृतिक बुद्धि, दोनों में गहरी नींद यह सुनिश्चित करने का कार्य करती है कि न्यूरॉन्स अस्थिर ना हों और मतिभ्रम की स्थिति ना बनें।

वैसे, सभी तरह के आर्टिफिशियल नेटवर्क को नींद की ज़रूरत नहीं पड़ती। यह ज़रूरत सिर्फ उन नेटवर्क को पड़ती है जिन्हें वास्तविक मस्तिष्क की तरह प्रशिक्षित किया जा रहा हो, या नेटवर्क खुद से कोई वास्तविक प्रणाली को सीख रहा हो। मशीन लर्निंग, डीप लर्निंग और एआई को इसकी ज़रूरत नहीं पड़ती क्योंकि ये मूलत: गणितीय संक्रियाओं पर निर्भर होते हैं।

न्यूरल नेटवर्क में नींद की अवस्था पारंपरिक कंप्यूटर के ‘स्लीप मोड’ से अलग है। कंप्यूटर के स्लीप मोड में जाने पर उसमें कुछ समय के लिए गतिविधियां रुक जाती हैं। आईटी एक्सपर्ट हमेशा से सलाह देते रहे हैं कि यदि आपका कंप्यूटर नखरे करने लगे तो उसे बंद करके फिर से चालू कीजिए।

लेकिन अस्थिर न्यूरल नेटवर्क में इस तरह का ‘स्लीप मोड’ कोई मदद नहीं कर सकता। और नेटवर्क को बंद करके वापिस चालू करना बात और बिगाड़ सकता है, बिजली की सप्लाई बंद करने से नेटवर्क रीसेट हो जाएगा और सारे पूर्व प्रशिक्षण को भुला देगा। न्यूरल नेटवर्क और प्राणियों की नींद का मतलब पूरी तरह निष्क्रिय होना नहीं है बल्कि इनमें नींद एक अलग तरह की अवस्था है जो न्यूरॉन्स को सुचारु रूप से काम करते रहने में मदद करती है।

अब शोधकर्ता नेटवर्क को कृत्रिम नींद देने के फायदों की पड़ताल रहे हैं। इसका एक लाभ उन्होंने पाया कि अक्सर ऐसा होता है कि सिमुलेशन शुरू करने पर कुछेक न्यूरॉन्स अपना कार्य नहीं करते, कृत्रिम नींद देने पर नेटवर्क के वे न्यूरॉन्स भी कार्यशील हो गए थे। जैसे-जैसे शोधकर्ता बिल्कुल जीवित तंत्रों जैसा न्यूरल नेटवर्क बनाते जा रहे हैं, इसमें आश्चर्य नहीं कि उन्हें भी नींद की ज़रूरत पड़ती है। उम्मीद है कि परिष्कृत न्यूरल नेटवर्क हमें हमारी नींद और अन्य प्रणालियों को और भी बेहतर समझने में मदद करेंगे।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://live.staticflickr.com/65535/50694445983_e8be6800c4_o.jpg

शोरगुल में साफ सुनने की तकनीक

वैसे तो हमारा मस्तिष्क काफी शोर भरे माहौल में भी किसी एक आवाज़ पर ध्यान केंद्रित कर सकता है, और उसे ठीक-ठीक सुन सकता है। लेकिन जब हमारे आसपास शोर ही शोर हो, या वृद्धावस्था हो, तो किसी एक आवाज़ को ठीक से सुन पाना मुश्किल हो जाता है। अब शोधकर्ताओं ने मशीन लर्निंग की मदद से इसका समाधान ढूंढ लिया है जिसे उन्होंने कोन ऑफ साइलेंस (खामोश शंकु) नाम दिया है।

कंप्यूटर विज्ञानियों ने मानव मस्तिष्क के समान संरचना वाले न्यूरल नेटवर्क को एक कमरे में कई लोगों द्वारा बोली जा रही आवाज़ों का स्रोत पता लगाने और उन आवाज़ों को अलग-अलग करने के लिए प्रशिक्षित किया। नेटवर्क ने यह इस आधार पर सीखा किकमरे के बीचों-बीच रखे गए कुछ माइक्रोफोन से कोई आवाज़ कितनी देर बाद टकराती है।

इस तरह प्रशिक्षित नेटवर्क को जब शोघकर्ताओं ने अत्यधिक शोर भरे माहौल में जांचा तो पाया गया कि नेटवर्क ने 3.7 डिग्री कोण वाले शंकुनुमा दायरे के भीतर आने वाली सिर्फ दो ही आवाज़ो को चिंहित किया और उन्हें ही सुनाना जारी रखा। इस तरह बाकी आवाज़ें बहुत मंद पड़ गर्इं, और वांछित आवाज़ ठीक से सुनाई पड़ी। शोधकर्ताओं द्वारा ये नतीजे न्यूरल इंफॉरमेशन प्रोसेसिंग सिस्टम पर हुए एक सम्मेलन में प्रस्तुत किए गए हैं।

भविष्य में इस तकनीक की श्रवण यंत्र, निरीक्षण प्रणाली, स्पीकरफोन, या लैपटॉप में उपयोग की जाने की संभावना है। यह तकनीक चलती-फिरती आवाज़ें भी पहचान कर उन्हें अलग कर सकती है, अत: यह पार्श्व में हो रहे शोर जैसे बाहर की आवाज़ें, बच्चों की आवाज़ें या अन्य शोर-शराबे को भी हटाकर सिर्फ वक्ता की आवाज़ सुना सकता है। इस तरह इसकी मदद से ज़ूम कॉल बेहतर किए सकते हैं। बहरहाल इस तकनीक को बाज़ार तक पहुंचने में अभी काफी पड़ाव पार करने बाकी हैं।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/listen_1280p.jpg?itok=uPSfILuw

सूचना एवं संचार प्रौद्योगिकी के प्रमुख पड़ाव – 2 – डॉ. डी. बालसुब्रमण्यन

मुक्त भारत के कंप्यूटर विज्ञान शिक्षा और अनुसंधान के वरिष्ठ प्रोफेसर वी. राजारामन ने हाल ही में एक किताब लिखी है जिसका शीर्षक है: सूचना और संचार प्रौद्योगिकी के प्रमुख आविष्कार (Groundbreaking Inventions in Information and Communication Technology)। इस किताब में उन्होंने पिछले कुछ समय में किए गए 15 आविष्कारों पर चर्चा की है। पिछले लेख में मैंने इनमें से सात आविष्कारों पर चर्चा की थी। इस लेख में हम बाकी आठ आविष्कारों पर चर्चा करेंगे।

पिछले लेख में बताए गए सातवें नवाचार, कंप्यूटर ग्राफिक्स, को याद करें। कंप्यूटर ग्राफिक्स ने डिजिटल डैटा को एक नया मकाम दिया और कंप्यूटर डिसप्ले पर डिजिटल डैटा का प्रदर्शन तस्वीरों और मूवीज़ के रूप में संभव बनाया। ग्राफिकल यूज़र इंटरफेस (क्रछक्ष्) ने डिसप्ले पर मौजूद किसी भी आइकॉन को इंगित करना और एक क्लिक में उसे खोलना संभव किया, जैसे पॉवर पॉइंट शुरू करना।

शुरुआत कंप्यूटर ‘माउस’ से हुई थी जिसकी मदद से कंप्यूटर डिसप्ले पर कर्सर को घुमाया-फिराया जा सकता था। और अब आधुनिक, हाथ में समाने वाले कंप्यूटरों में माउस की जगह टच स्क्रीन कर्सर ने ले ली है।

यह किताब इन आविष्कारों के आविष्कारकों के जीवन वृतांत और उनकी उपलब्धियों से भरपूर है। साथ ही आविष्कारों के तकनीकी विवरण ‘बॉक्स आइटम’ के रूप में दिए गए हैं (किताब में 52 बॉक्स आइटम हैं)। इन्हें पढ़कर छात्रों और भावी आविष्कारकों को अवश्य ही प्रेरणा मिलेगी।

अगला महत्वपूर्ण आविष्कार है इंटरनेट का विकास। नि:संदेह यह 20वीं सदी के महानतम आविष्कारों में से एक है। इसने ई-मेल के ज़रिए संवाद करना, यूट्यूब वीडियो देखना व कई अन्य एप्लीकेशन्स का उपयोग संभव बनाया, जिन्हें आज हम मानकर चलते हैं।

दो महत्वपूर्ण आविष्कारों से इंटरनेट का विकास हुआ। पहला, बड़े डैटा को भेजने के पूर्व छोटे पैकेटों में तोड़ना। इसका आविष्कार पॉल बारान और डोनाल्ड डेविस ने किया था। और दूसरा, ट्रांसमिशन कंट्रोल/इंटरनेट प्रोटोकॉल (च्र्क्घ्/क्ष्घ् प्रोटोकॉल) का मानकीकरण। इस प्रोटोकॉल ने मौजूदा टेलीफोन इंफ्रास्ट्रक्चर का उपयोग करके दुनिया भर में फैले विभिन्न कंप्यूटर नेटवक्र्स को आपस में जोड़ना संभव बनाया। च्र्क्घ्/क्ष्घ् प्रोटोकॉल विंटन सर्फ और रॉबर्ट कान द्वारा बनाया गया था।

नौवां आविष्कार है ग्लोबल पोज़िशनिंग सिस्टम (क्रघ्च्)। क्रघ्च् किसी एक जगह (अ) से दूसरी जगह (ब) तक जाने के लिए हमें सबसे सही रास्ता खोजने में मदद करता है। पहले नाविक आकाश में तारों की स्थिति देखकर स्थान और मार्ग का पता लगाया करते थे। इसके बाद चुंबकीय दिशासूचक की खोज ने रास्ता ढूंढने में सहायता की, और फिर मार्कोनी (या संभवत: जे.सी. बोस) द्वारा किया गया बेतार रेडियो का आविष्कार इसमें सहायक बना। प्रो. राजारामन बताते हैं कि उपग्रहों के प्रक्षेपण के बाद यह पता लग गया था कि कुछ उपग्रहों से प्रसारित संकेत, दुनिया में कहीं भी किसी वस्तु के अक्षांश, देशांतर और ऊंचाई के बारे में कुछ मीटर की सटीकता से पता लगा सकते हैं। इस महंगी परियोजना की अगुवाई रोजर ईस्टन, ब्रोडफोर्ड पार्किंसन और इवान गेटिंग द्वारा की गई थी, जो अमेरिकी रक्षा विभाग द्वारा समर्थित थी।

दसवां आविष्कार है वल्र्ड वाइड वेब (ज़्ज़्ज़्)। इस आविष्कार ने इंटरनेट का बुनियादी ढांचा मुफ्त उपलब्ध कराया। इसकी बदौलत दुनिया भर के कंप्यूटरों में सहेजे गए अरबों (सार्वजनिक) दस्तावेज़ों का कोई भी उपभोक्ता उपयोग कर सकता है। और यह मुख्य रूप से संभव हो सका टिम बर्नर्स-ली के कार्य से। उन्होंने हाइपरटेक्स्ट मार्कअप लैंग्वेज (क्तच्र्ग्ख्र्) में लिखे गए दस्तावेज़ों को आपस में जोड़ने के लिए हाइपरटेक्स्ट ट्रांसफर प्रोटोकॉल (क्तच्र्च्र्घ्) नामक प्रोटोकॉल बनाया था। प्रो. राजारामन बताते हैं: ‘ज़्ज़्ज़् इंटरनेट से जुड़े कंप्यूटरों में सहेजा गया क्तच्र्ग्ख्र् भाषा में लिखा कंटेंट है, जिस तक क्तच्र्च्र्घ् का उपयोग करके पंहुचा जा सकता है।’

वल्र्ड वाइड वेब पर कोई ‘जुम्ला’ लिखकर सम्बंधित जानकारी/दस्तावेज़ों को ढूंढा या हासिल किया जाता है जैसे: भारत के राज्यों की राजधानियां, और इसके लिए हमें एक सॉफ्टवेयर की ज़रूरत पड़ती है। इस सॉफ्टवेयर को हम सर्च इंजिन के रूप में जानते हैं, यही ग्यारहवां नवाचार है। गूगल ऐसा ही सर्च इंजिन है। इसने लैरी पेज और सेर्जी ब्रिान द्वारा विकसित एल्गोरिदम के दम पर बाज़ार पर कब्ज़ा कर लिया है।

बारहवां नवाचार है मल्टीमीडिया का डिजिटलीकरण और संक्षेपण। किसी टेक्स्ट, चित्र, ऑडियो या वीडियो को प्रोसेस करने के लिए उसे 0 और 1 के डिजिटल रूप में बदलना होता है। डिजिटल रूप में डैटा में 0 और 1 की संख्या बहुत अधिक होती है। डैटा में ह्यास के बिना और किफायती ढंग से डैटा प्रसारित करने के लिए डैटा का संक्षेपण किया जाता है। डैटा संक्षेपण के लिए कई एल्गोरिदम मौजूद हैं, जिनके बारे में किताब में बोधगम्य तरीके से बताया गया है।

अगला आविष्कार है मोबाइल कंप्यूटिंग। औद्योगिक, वैज्ञानिक और चिकित्सा उपयोगों के लिए आरक्षित वायरलेस बैंड को सरकार ने 1985 में निरस्त कर दिया था और डैटा के संचार के लिए इसका उपयोग करने की अनुमति दी थी। इसकी मदद से लैपटॉप ख्र्ॠग़् से बेतार जोड़े जा सकते हैं। बेतार प्रसारण के लिए प्रोटोकॉल का मानकीकरण हुआ, जिसने वाईफाई को जन्म दिया। इंटरनेट के उपयोग ने हमें व्हाट्सएप जैसे एप्लीकेशन्स दिए। और 3जी और 4जी मोबाइल सर्विस आने से स्मार्ट फोन विकसित हुए।

चौदहवां नवाचार है क्लाउड कंप्यूटिंग। क्लाउड कंप्यूटिंग यानी ज़रूरत के समय अन्यत्र उपलब्ध कंप्यूटर संसाधन, खासकर डैटा स्टोरेज, और कंप्यूटिंग क्षमता का उपयोग करना। अमेज़ॉन और गूगल जैसी कंपनियों ने अपने कंप्यूटिंग व्यवसाय के लिए विशाल कंप्यूटिंग व्यवस्था बनाई हुई है। कोई भी ‘ज़रूरत के हिसाब’ से भुगतान करके इनकी इस कंप्यूटिंग क्षमता का उपयोग कर सकता है। यह इंटरनेट के आगमन और इंटरनेट उपयोग की घटती कीमत से संभव हुआ है।

पंद्रहवां नवाचार है डीप लर्निंग। तंत्रिका वैज्ञानिक मैककुलोक और गणितज्ञ वाल्टर पिट्स ने मिलकर मानव मस्तिष्क के न्यूरॉन का मॉडल तैयार किया था। जेफ्री हिंटन और डेविड रुमेलहार्ट ने बहुस्तरीय तंत्रिका नेटवर्क कंप्यूटर पर सिमुलेट किया। विशाल डैटा की मदद से प्रशिक्षण देकर इस मॉडल को चेहरे और वाणी पहचान के लिए तैयार किया जा सकता है। यह आर्टिफिशियल इंटेलीजेंस का एक पहलू है, जिसे भविष्य की चालक-रहित कार बनाने जैसे कामों में उपयोग किया जाएगा।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://images-na.ssl-images-amazon.com/images/I/51Ur-gIqG6L.SX327_BO1,204,203,200.jpg

कांटों, सूंडों, सुइयों का भौतिक शास्त्र

चुभने वाली चीज़ें प्रकृति में कई भूमिकाएं अदा करती हैं। कैक्टस व अन्य पौधों के कांटे उन्हें सुरक्षा प्रदान करते हैं, मच्छर की सूंड उसे खून पीने में मदद करती है, साही का कंटीला आवरण उसे बचाता है। ये सभी सीधी रचनाएं हैं जो एक सिरे पर नुकीली होती हैं। भौतिकविदों के लिए इनकी रचना में समानताएं कौतूहल का विषय रही हैं।

वैज्ञानिकों ने पहली समानता तो यह देखी कि चाहे वह नैनोमीटर की साइज़ के बैक्टीरियाभक्षी वायरस के तंतु हों या आर्कटिक सागर में पाई जाने वाली नारव्हेल की 2-3 मीटर लंबी सूंड हो, सभी लंबूतरे, पतले शंकु होते हैं जिनके आधार का व्यास उनकी कुल लंबाई की तुलना में बहुत कम होता है।

किसी भी चुभने वाली चीज़ का आकार दो परस्पर विरोधी बाधाओं से निर्धारित होता है। पहली, लक्ष्य को बेधने के लिए उसे इतना बल लगाना पड़ेगा जो लक्ष्य द्वारा उत्पन्न घर्षण के दबाव को पार कर सके। और दूसरी, यह बल इतना भी नहीं हो सकता कि बेधक रचना टूट जाए या मुड़ जाए।

वैसे तो इन दो सीमाओं को साधने के लिए कई आकृतियां – पतली और लंबी से लेकर चौड़ी और छोटी – उपयोगी हो सकती हैं लेकिन प्रकृति ने जिस आकृति को सामान्य रूप से अपनाया है उसमें आधार के व्यास और लंबाई का अनुपात लगभग 0.06 होता है। यानी यदि चुभने वाली रचना की लंबाई 5 से.मी. है तो उसके आधार का व्यास लगभग 0.3 से.मी. होगा।

डेनमार्क के तकनीकी विश्वविद्यालय के भौतिक शास्त्री कारे जेंसन का कहना है कि प्रकृति में आम तौर पर इस आकृति का चयन होने का कारण है कि प्रकृति ‘किफायत’ से काम करती है। यह सही है कि मोटे बेधक ज़्यादा टिकाऊ होंगे लेकिन उनमें कुल पदार्थ भी तो ज़्यादा लगेगा, जो सम्बंधित जीव को ही भरना पड़ेगा। इसलिए जैव विकास ऐसी रचना को वरीयता देगा जो लक्ष्य को बेधने के लिए बस पर्याप्त मज़बूत हो। नेचर फिज़िक्स में प्रकाशित शोध पत्र में जेंसन की टीम ने डिज़ाइन के इस सिद्धांत की मदद से बेधने वाली चीज़ों की आकृतियों का सटीक पूर्वानुमान प्रस्तुत किया है।

जेंसन की टीम ने ठोस शंक्वाकार बेधक चीज़ों के लिए एक सैद्धांतिक मॉडल विकसित किया। उनकी गणनाओं से पता चला कि आधार का यथेष्ट व्यास मात्र तीन बातों पर निर्भर करता है – बेधक की लंबाई, उसके पदार्थ की कठोरता और लक्षित ऊतक द्वारा उत्पन्न घर्षण का दबाव। उन्होंने यह भी पाया कि पदार्थ की कठोरता और घर्षण का दबाव ज़्यादा असर नहीं डालता। उनके अनुसार मुख्य बात आधार के व्यास और लंबाई के अनुपात की है।

पहले प्रकाशित एक मॉडल में कहा गया था कि आधार का व्यास लंबाई की तुलना में 2/3 के अनुपात में बदलता है। यानी यदि लंबाई दुगनी हो तो व्यास में 59 प्रतिशत की वृद्धि होगी। जेंसन की समीकरण दर्शाती है कि इन दो के बीच सम्बंध समानुपात का है – लंबाई दुगनी होगी तो व्यास भी दुगना हो जाएगा।

अपनी समीकरण को परखने के लिए जेंसन और उनके साथियों ने सजीवों में उपस्थित 140 बेधक अंगों, कांटों वगैरह का अध्ययन किया। इनमें कशेरुकी-अकशेरुकी, जलचर-थलचर, पौधे, शैवाल और वायरस शामिल थे। इन सभी में बेधक समीकरण से मेल खाते पाए गए। इनके अलावा मानव निर्मित सुइयां, कीलें, तीर वगैरह भी इस समीकरण पर खरे उतरे। तो लगता है समीकरण सही है। वैसे अभी इसमें कई अन्य बातों को जोड़ना शेष है – जैसे कई ऐसी रचनाएं खोखली होती हैं, कई इस तरह बनी होती हैं कि बेधते समय वे मुड़ें, या घुमावदार होती हैं वगैरह। इस प्रकार के विश्लेषण के कई वास्तविक अनुप्रयोग हो सकते हैं।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.scientificamerican.com/sciam/cache/file/DFD9D551-6694-4889-A6F04A2FB4D7F376_source.jpg?w=590&h=800&68625947-A1CC-40CD-964556A3FD8E4B79

रंग बदलती स्याही बताएगी आपकी थकान

जकल स्मार्ट वॉच या इलेक्ट्रॉनिक पैच जैसे पहने जा सकने वाले इलेक्ट्रॉनिक संवेदी उपकरण की मदद से रक्तचाप, रक्त शर्करा की मात्रा वगैरह की निगरानी करना संभव है। और अब एडवांस्ड मटेरियल में प्रकाशित एक ताज़ा अध्ययन कहता है कि रंग बदलने वाली स्याही स्वास्थ्य जांच और पर्यावरण निगरानी में सहायक हो सकती है।

टफ्ट्स युनिवर्सिटी की सिल्कलैब के बायोमेडिकल इंजीनियर फियोरेन्ज़ो ओमेनेटो और उनके साथियों द्वारा तैयार यह नई रेशम-आधारित स्याही आसपास मौजूद रसायनों की उपस्थिति और मात्रा के बारे में बता सकती है। इस स्याही से रंगे कपड़ों का रंग पसीने के संपर्क में आने पर बदल जाता है, या कमरे में कार्बन मोनोऑक्साइड के प्रवेश करने पर कपड़ों पर बने चित्रों या डिज़ाइन का रंग बदल जाता है। इस स्याही को टी-शर्ट से लेकर तम्बू तक, किसी भी चीज़ पर इस्तेमाल किया जा सकता है।

वैसे तो शोधकर्ता इसके पहले दस्तानों या पैबंद पर इंकजेट प्रिंटर की मदद से स्प्रे करके छोटे सेंसर उपकरण बना चुके थे। लेकिन अब वे स्याही को कई तत्वों के साथ बड़ी चीज़ों पर प्रिंट करना चाहते थे। इसके लिए उन्होंने स्याही को सोडियम एल्जिनेट की मदद से गाढ़ा किया और उसमें विभिन्न अभिक्रियाशील पदार्थ मिलाए। रेशम-आधारित स्याही बनाने के लिए उन्होंने रेशम को उसके घटक प्रोटीन्स में तोड़ा, और फिर उन्हें पानी में निलंबित किया। इसके बाद उन्होंने इसमें अभिक्रियाशील रसायनों (जैसे पीएच-संवेदी सूचक और लैक्टेट ऑक्सीडेज़) मिलाए और देखा कि आसपास के वातावरण में परिवर्तन होने पर इसका परिणामी रंग कैसे बदलता है? इस स्याही से रंगे कपड़ों को पहनने पर इसमें मौजूद पीएच सूचक त्वचा के स्वास्थ्य या निर्जलीकरण के बारे में बता सकते हैं; लैक्टेट ऑक्सीडेज़ व्यक्ति की थकान के स्तर को माप सकता है। कपड़ों पर इन परिवर्तनों को आंखों से देखा जा सकता है, लेकिन विविध रंग में बदलाव को देखने और उनका डैटाबेस तैयार करने के लिए शोधकर्ताओं ने इसमें एक कैमरा-इमेजिंग विश्लेषण तकनीक का भी उपयोग किया है।

हुवाई विश्वविद्यालय के मैकेनिकल इंजीनियर टायलर रे कहते हैं कि आजकल उपलब्ध अधिकांश पहनने योग्य मॉनीटर कठोर, तार वाले और अपेक्षाकृत भारी होते हैं। वे आगे कहते हैं कि इस नई स्याही तकनीक में उपभोक्ता द्वारा शौकिया तौर पर पहनी जाने वाली वस्तुओं को नैदानिक उपकरणों में बदलने की क्षमता है जो चिकित्सकों को कार्रवाई-योग्य जानकारी दे सकती है। लेकिन किसी भी वर्णमापक तकनीक के साथ एक समस्या यह होती है कि विभिन्न पर्यावरणीय परिस्थितियां इसकी सटीकता को प्रभावित करती हैं, जैसे प्रकाश या कैमरा। अध्ययनों में इन मुद्दों पर ध्यान देने की ज़रूरत है।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.scientificamerican.com/sciam/assets/Image/2020/TShirtSensor%5B3%5D.jpg

टेलीफोन केबल से भूकंप संवेदन

कैलिफोर्निया इंस्टिट्यूट ऑफ टेक्नॉलॉजी के भूकंप विज्ञानी जोंगवेन ज़ान ने नववर्ष एक विचित्र अंदाज़ में मनाया। उन्होंने नववर्ष के जश्न के दौरान बैंड की तेज़ ध्वनि से उत्पन्न कंपन को ज़मीन के नीचे दबे प्रकाशीय तंतुओं की मदद से रिकॉर्ड किया।

गौरतलब है कि टीवी, फोन और इंटरनेट के लिए प्रकाशीय तंतु केबल का उपयोग होता है। इन महीन तारों का नेटवर्क शहरों में किसी पेड़ की जड़ों की तरह फैला है। इन तारों के भीतर कांच के कई अत्यंत बारीक तंतुओं में प्रकाश की मदद से डैटा प्रसारित किया जाता है। एक समय पर सारे तंतुओं का उपयोग नहीं होता। ऐसे ‘निष्क्रिय तंतुओं’ का उपयोग सस्ते भूकंप संवेदी के रूप में किया जा सकता है।       

ज़ान की टीम ने स्थानीय अधिकारियों से 37 किलोमीटर लंबे केबल के दो स्ट्रैंड उपयोग करने की अनुमति ली हुई थी। उन्होंने दोनों स्ट्रैंड के एक-एक छोर पर लेज़र लगा दिया जो अवरक्त प्रकाश छोड़ता था। इनमें से अधिकांश प्रकाश तो फाइबर के रास्ते आगे बढ़ा लेकिन कुछ हिस्सा फाइबर में नुक्स के कारण परावर्तित हो गया। शोधकर्ताओं ने इस परावर्तित प्रकाश के वापिस पहुंचने के समय को भी अपने उपकरणों में दर्ज किया। ज़ान के अनुसार फाइबर में खराबी के कारण प्रतिध्वनि सुनाई देती है।

कई बार मापन करके शोधकर्ताओं ने प्रतिध्वनि के पहुंचने के समय में अंतर को देखा। इसके आधार पर वे बता पा रहे थे कि कंपन कब प्रकाशीय तंतु के उस खंड को खींचकर थोड़ा लंबा कर देते हैं। उपकरणों की मदद से फाइबर में एक मीटर खंड की लंबाई में एक अरबवें हिस्से के फैलाव का पता लगाया सकता है। तो आपके पास हज़ारों संवेदी उपकरण मौजूद हैं।

इस तकनीक को डिस्ट्रिब्यूटेड एकूस्टिक सेंसिंग कहते हैं और पूर्व में इसका उपयोग सेना द्वारा पनडुब्बियों को ताड़ने में किया जाता था। अब इनका उपयोग हर उस काम में किया जा सकता जहां कंपन शामिल हैं, जैसे भूकंप की निगरानी में।    

अलबत्ता, ज़ान और अन्य शोधकर्ता भविष्य में इसके व्यापक उपयोग को लेकर चर्चा कर रहे हैं। इसका उपयोग न केवल भूकंपों की निगरानी के लिए किया जा सकता है बल्कि ट्रैफिक पैटर्न को रिकॉर्ड करने, ज़मीन के नीचे दबी पाइप लाइन में रिसाव का पता लगाने और अनधिकृत प्रवेश का पता लगाने के लिए किया जा सकता है। ज़ान का मानना है कि इस प्रणाली को लॉस एंजिलिस जैसे बड़े शहरों में निकट भविष्य में अपनाया जा सकता है जहां पहले से हज़ारों किलोमीटर का फाइबर नेटवर्क मौजूद है। (स्रोत फीचर्स) 

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/horns_1280p.jpg?itok=1OZ0bjDn

पसीना – नैदानिक उपकरण और विद्युत स्रोत – डॉ. डी. बालसुब्रमण्यन

पुराने समय में जब घर में कोई बीमार पड़ता था तो उसका इलाज करने के लिए पारिवारिक चिकित्सक को घर बुलाया जाता था। चिकित्सक सबसे पहले मरीज़ के चेहरे, कनपटी और छाती की त्वचा छूकर देखते थे। यह उन्हें जल्दी बीमारी पता लगाने में मदद करता था। त्वचा छूने पर यदि सामान्य से अधिक गर्म लगती है तो मरीज़ को बुखार है; यदि त्वचा का रंग सामान्य से अधिक फीका है, तो मरीज़ को डिहाइड्रशेन (पानी की कमी) है और उसे अधिक पानी पीने की आवश्यकता है; अगर त्वचा नीली पड़ गई है तो मरीज़ को अधिक ऑक्सीजन की ज़रूरत है; और अगर त्वचा गीली लगती है तो मरीज़ को व्यायाम या शारीरिक श्रम कम करने की ज़रूरत है। फिर वे मरीज़ को उपयुक्त औषधि के रूप में गोलियां, घुटी या इंजेक्शन देते थे।

इसके विपरीत, अब हम मरीज़ को दिखाने के लिए डॉक्टर के क्लीनिक जाते हैं, जहां रोग का पता लगाने के लिए वे मरीज़ को नैदानिक केंद्र (पैथॉलॉजी) भेजते हैं और उसकी रिपोर्ट के आधार पर दवा देते हैं। त्वचा देख-छूकर रोग का पता करना अब बीते ज़माने की बात हो गई है।

वैसे इस समय त्वचा विशेषज्ञ एक दिलचस्प तरीके का उपयोग कर रहे हैं। इस तरीके में वे एक महीन बहुलक-आधारित पट्टी में वांछित औषधि डालते हैं जिसे मरीज़ की बांह या छाती की त्वचा पर चिपका दिया जाता है। फिर इस पट्टी में बहुत हल्का विद्युत प्रवाह किया जाता है, और पसीने के माध्यम से दवा सीधे शरीर में चली जाती है। इस प्रकार यह पहनी जा सकने वाली व्यक्तिगत चिकित्सा तकनीक है जिसमें गोलियां या औषधि नहीं खानी पड़ती। माइक्रोइलेक्ट्रॉनिक और जैव-संगत पोलीमर के आने से आज हमारे पास “इलेक्ट्रॉनिक त्वचा” (ई-त्वचा) है, नैनोवायर की मदद से इसे त्वचा पर जोड़ा जा सकता है और माइक्रो बैटरी की मदद से इसमें विद्युत प्रवाहित की जा सकती है।

पसीने की भूमिका

गौर करेंगे तो देखेंगे कि इसमें हमारे शरीर के सक्रिय तरल यानी पसीने को नज़रअंदाज कर दिया गया है या इसे महज एक अक्रिय वाहक के रूप में देखा जा रहा है जिसकी कोई अन्य भूमिका नहीं है। यह हाल ही में हुआ है कि हमारे शरीर में पसीने की भूमिका और इसमें मौजूद रसायनों के बारे में हमारी समझ और इसका इस्तेमाल बढ़ा है। पसीना हमारी पूरी त्वचा में वितरित तीन प्रकार की ग्रंथियों से निकलता है। ये ग्रंथियां पानी और कई अन्य पदार्थों को स्रावित करके हमारे शरीर के तापमान को 37 डिग्री सेल्सियस (या 98.4 डिग्री फैरनहाइट) बनाए रखने में मदद करती हैं। हमारे मस्तिष्क में तापमान-संवेदी तंत्रिकाएं (न्यूरॉन्स) होती हैं, जो शरीर के तापमान और चयापचय गतिविधि का आकलन करके पसीना स्रावित करने वाली ग्रंथियों को नियंत्रित करती हैं। इस तरह पसीना हमारे शरीर के तापमान को नियंत्रित रखता है।

पसीने में क्या होता है? यह 99 प्रतिशत पानी होता है जिसमें सोडियम, पोटेशियम, कैल्शियम, मैग्नीशियम और क्लोराइड आयन, अमोनियम आयन, यूरिया, लैक्टिक एसिड, ग्लूकोज़ जैसे अन्य पदार्थ होते हैं। किसी मरीज़ के पसीने में मौजूद पदार्थों के विश्लेषण और इसकी तुलना एक सामान्य व्यक्ति के पसीने करें, तो पसीना एक नैदानिक तरल हो सकता है (ठीक उसी तरह जिस तरह शरीर के अन्य तरल पदार्थ होते हैं)। जैसे, सिस्टिक फाइब्रोसिस बीमारी में मरीज़ के पसीने में सोडियम और क्लोराइड आयनों का अनुपात और सामान्य व्यक्ति के पसीने में सोडियम और क्लोराइड आयनों का अनुपात अलग-अलग होता है। इसी तरह डायबिटीज़ के रोगी के पसीने में ग्लूकोज़ की मात्रा सामान्य व्यक्ति से अधिक होती है। लेकिन इन नैदानिक तरीकों में समस्या पसीने की मात्रा की है।

त्वचा आधारित निदान

यहां आधुनिक तकनीक का महत्व सामने आता है। अब माइक्रोइलेक्ट्रॉनिक और ई-त्वचा पट्टी दोनों उपलब्ध हैं। वैज्ञानिक इनका उपयोग पट्टी में लगे उपयुक्त संवेदियों की मदद से, पसीना निकलने के वक्त ही उसमें मौजूद में कुछ चुनिंदा पदार्थों की मात्रा का पता लगाने में कर रहे हैं। लेकिन क्या यह बेहतर नहीं होगा कि हम ई-त्वचा पट्टी पर एक की बजाए कई पदार्थों की जांच के लिए सेंसर लगाकर, एक साथ कई जांच कर पाएं?

इस बारे में कैलिफोर्निया के जीव विज्ञानी, भौतिक विज्ञानी, कंप्यूटर विशेषज्ञ और इलेक्ट्रिकल इंजीनियरों द्वारा एक महत्वपूर्ण अध्ययन 2016 में नेचर पत्रिका प्रकाशित हुआ था। इसमें उन्होंने ई-त्वचा पट्टी पर एक नहीं बल्कि छह सेंसर जोड़े थे जो सोडियम, पोटेशियम, क्लोराइड आयन, लैक्टेट और ग्लूकोज़ की मात्रा और पसीने का तापमान पता करते हैं। ये सेंसर इस तरह लगाए गए थे कि सेंसर और त्वचा के बीच हमेशा संपर्क बना रहे। प्रत्येक सेंसर से आने वाले विद्युत संकेतों को डिजिटल संकेतों में परिवर्तित किया जाता है और माइक्रो-नियंत्रक को भेजा जाता है। इन संकेतों को ब्लूटूथ की मदद से मोबाइल फोन या अन्य स्क्रीन पर पढ़ा जा सकता है, या एसएमएस, ईमेल के ज़रिए किसी को भेजा जा सकता है या क्लाउड इंटरफेस पर अपलोड भी किया जा सकता है।

2017 में इन्हीं शोधकर्ताओं ने प्रोसिडिंग्स ऑफ दी नेशनल एकेडमी ऑफ साइंसेस में एक और पेपर प्रकाशित किया था। चूंकि एक जगह स्थिर रहने वाले (या गतिहीन) लोगों में प्राकृतिक रूप से पसीना बहुत कम निकलता है इसलिए शोधकर्ताओं ने आयनटोफोरेसिस नामक तरीके का उपयोग किया। इसमें वांछित स्थान को पसीना स्रावित करने के लिए उत्तेजित किया जा सकता है और पर्याप्त मात्रा में पसीना प्राप्त किया जा सकता है। फिर किसी सामान्य व्यक्ति और सिस्टिक फाइब्रोसिस वाले व्यक्तियों में सम्बंधित पदार्थों का विश्लेषण किया और पसीने में ग्लूकोज के स्तर को भी देखा। जांच के लिए प्रयुक्त शीट उनके द्वारा पूर्व में उपयोग की गई एकीकृत शीट जैसी थी। अध्ययन में उन्होंने पाया कि एक सामान्य व्यक्ति में प्रति लीटर 26.7 मिली मोल सोडियम आयन और 21.2 मिली मोल क्लोराइड आयन होते हैं (ध्यान दें कि यहां सोडियम आयन का स्तर क्लोराइड आयन के स्तर से अधिक है), जबकि सिस्टिक फाइब्रोसिस के रोगी में सोडियम आयन का स्तर 2.3 मिली मोल और क्लोराइड आयन का स्तर 95.7 मिली मोल था (जो सोडियम आयन की अपेक्षा कहीं अधिक है)। ध्यान रहे कि सिस्टिक फाइब्रोसिस विशेषज्ञों द्वारा किए जाने वाली सामान्य जांच में भी यही नतीजे मिलते हैं। शोधकर्ताओं ने यह भी पाया कि उपवास के दौरान ग्लूकोज़ पीने पर पसीने और रक्त में ग्लूकोज का स्तर बढ़ जाता है।

गौरतलब है कि इन सब परीक्षणों में, प्रोब और सेंसरों को संचालित करने के लिए माइक्रोबैटरी की मदद से विद्युत प्रवाहित करने की आवश्यकता पड़ती है। यदि इन ई-त्वचा का रोबोटिक्स और अन्य उपकरणों में उपयोग करना है, तो क्या हम इन बैटरियों से निजात पा सकते हैं, और पसीने में मौजूद पदार्थों का उपयोग विद्युत उत्पन्न करने वाले जैव र्इंधन के रूप में कर सकते है?

कुछ दिनों पहले साइंस रोबोटिक्स में प्रकाशित शोध इसी सवाल का जवाब देता है। इस अध्ययन में शोधकर्ताओं ने लोगों की ई-त्वचा पट्टी पर लॉक्स एंज़ाइम जोड़ा। यह लॉक्स एंज़ाइम पसीने में मौजूद लैक्टेट के साथ क्रिया करता है और इसे एक बायोएनोड (जैविक धनाग्र) पर पायरुवेट में ऑक्सीकृत कर देता है, और एक बायोकेथोड (जैविक ऋणाग्र) पर ऑक्सीजन को पानी में अवकृत कर देता है। इस प्रकार उत्पन्न विद्युत ऊर्जा, बिना किसी बाहरी स्रोत के, ई-त्वचा पट्टी को संचालित करने के लिए पर्याप्त होती है – क्या शानदार तरीका है!

और अंत में, कोविड-19 संक्रमण के दिनों में यह जानना लाभप्रद है कि पसीने में कोई भी रोगजनक (बैक्टीरिया या वायरस) नहीं होता; इसके उलट इसमें एक कीटाणु-नाशक प्रोटीन होता है जिसे डर्मसीडिन कहते हैं। हो सकता है कि डर्मसीडिन या इसका संशोधित रूप एंटी-वायरस की तरह काम कर जाए।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.allaboutcircuits.com/uploads/thumbnails/Perspiration-powered_electronic_skin.jpg

एंज़ाइम की मदद से प्लास्टिक पुनर्चक्रण

दुनिया भर में प्लास्टिक रिसाइक्लिंग एक बड़ी समस्या है। नेचर पत्रिका में प्रकाशित शोध के मुताबिक इस समस्या के समाधान में शोधकर्ताओं ने हाल ही में एक ऐसा एंज़ाइम तैयार किया है जो प्लास्टिक को 90 प्रतिशत तक रिसाइकल कर सकता है।

पॉलीएथिलीन टेरेथेलेट (PET) दुनिया में सर्वाधिक इस्तेमाल होने वाला प्लास्टिक है। इसका सालाना उत्पादन लगभग 7 करोड़ टन है। वैसे तो अभी भी PET का पुनर्चक्रण किया जाता है लेकिन इसमें समस्या यह है कि पुनर्चक्रण के लिए कई रंग के प्लास्टिक जमा होते हैं। जब इनका पुनर्चक्रण किया जाता है तो अंत में भूरे या काले रंग का प्लास्टिक मिलता है। यह पेकेजिंग के लिए आकर्षक नहीं होता इसलिए इसे या तो चादर के रूप में या अन्य निम्न-श्रेणी के फाइबर प्लास्टिक में बदल दिया जाता है। और अंतत: इसे या तो जला दिया जाता है या लैंडफिल में फेंक दिया जाता है जिसे पुनर्चक्रण तो नहीं कहा जा सकता।

इसी समस्या के समाधान में वैज्ञानिक एक ऐसे एंज़ाइम की खोज में थे जो PET और अन्य प्लास्टिक का पुनर्चक्रण कर सके। 2012 में ओसाका विश्वविद्यालय के शोधकर्ताओं को कम्पोस्ट के ढेर में LLC नामक एक एंज़ाइम मिला था जो PET के दो बिल्डिंग ब्लॉक, टेरेथेलेट और एथिलीन ग्लायकॉल, के बीच के बंध को तोड़ सकता है। प्रकृति में इस एंज़ाइम का काम है कि यह कई पत्तियों पर मौजूद मोमी आवरण का विघटन करता है। LLC सिर्फ पीईटी बंधों को तोड़ सकता है और वह भी धीमी गति से। लेकिन यदि तापमान 65 डिग्री सेल्सियस हो तो कुछ समय काम करने के बाद यह नष्ट हो जाता है। इसी तापमान पर तो PET नरम होना शुरू होता है और तभी एंज़ाइम आसानी से प्लास्टिक के बंध तक पहुंचकर उन्हें तोड़ सकेगा।

हालिया शोध में प्लास्टिक कंपनी कारबायोस के एलैन मार्टी और उनके साथियों ने इस एंज़ाइम में कुछ फेरबदल किए। उन्होंने उन अमिनो अम्लों का पता किया जिनकी मदद से यह एंज़ाइम टेरेथेलेट और एथिलीन ग्लाइकॉल समूहों के रासायनिक बंध से जुड़ता है। उन्होंने इस एंज़ाइम को उच्च तापमान पर काम करवाने के तरीके भी खोजे।

इसके बाद शोधकर्ताओं ने ऐसे सैकड़ों परिवर्तित एंज़ाइम्स की मदद से PET प्लास्टिक का पुनर्चक्रण करके देखा। कई प्रयास के बाद उन्हें एक ऐसा परिवर्तित एंज़ाइम मिला जो मूल LLC की तुलना में 10,000 गुना अधिक कुशलता से PET बंध तोड़ सकता है। यह एंज़ाइम 72 डिग्री सेल्सियस पर भी काम करता है। प्रायोगिक तौर पर इस एंज़ाइम ने 10 घंटों में 90 प्रतिशत 200 ग्राम PET का पुनर्चक्रण किया। इस प्रक्रिया से प्राप्त टेरेथेलेट और एथिलीन ग्लायकॉल से PET और प्लास्टिक बोतल तैयार किए गए जो नए प्लास्टिक जितने मज़बूत थे। हालांकि अभी स्पष्ट नहीं है कि यह आर्थिक दृष्टि से कितना वहनीय होगा लेकिन इसकी खासियत यह है कि इससे जो प्लास्टिक मिलता है वह नए जैसा टिकाऊ और आकर्षक होता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://images.fastcompany.net/image/upload/w_937,ar_16:9,c_fill,g_auto,f_auto,q_auto,fl_lossy/wp-cms/uploads/2019/10/p-1-90412215-hitachi-wants-to-use-a-plastic-eating-enzyme-to-clean-up-plastic-pollution-1.jpg

कोरोना के खिलाफ लड़ाई में टेक्नॉलॉजी बना हथियार – प्रदीप

स समय देश ही नहीं, बल्कि पूरी दुनिया कोरोना वायरस नामक एक ऐसे दुष्चक्र में फंसी है जिससे निकलने के लिए असाधारण कदमों और उपायों की ज़रूरत है। महामारी कोविड-19 फैलाने वाले कोरोना वायरस से संक्रमित लोगों की संख्या दुनिया में साढ़े सात लाख तक पहुंच गई है और 33 हज़ार से अधिक लोग जान गंवा चुके हैं। हर रोज़ संक्रमित लोगों और मौतों की संख्या बढ़ती जा रही है और यह महामारी नए इलाकों में पांव पसारती जा रही है।

विशेषज्ञों का मानना है कि हम बिग डैटा, क्लाउड कंप्यूटिंग, सुपर कम्प्यूटर, आर्टिफिशियल इंटेलीजेंस, रोबोटिक्स, 3-डी प्रिंटिंग, थर्मल इमेज़िंग और 5-जी जैसी टेक्नॉलॉजी का इस्तेमाल करते हुए बेहद प्रभावी ढंग से कोरोनावायरस से मुकाबला कर सकते हैं। इस महामारी से निपटने के लिए यह बेहद ज़रूरी है कि सरकार लोगों की निगरानी रखे। आज टेक्नॉलॉजी की बदौलत सभी लोगों पर एक साथ हर समय निगरानी रखना मुमकिन है।

कोरोना वायरस के खिलाफ अपनी लड़ाई में कई सरकारों ने टेक्नॉलॉजी को मोर्चे पर लगा दिया है। टेक्नॉलॉजी का ही इस्तेमाल करते हुए चीन ने इस वायरस पर काफी हद तक काबू पाया है। लोगों के स्मार्टफोनों, चेहरा पहचानने वाले हज़ारों-लाखों कैमरों, और अपने शरीर का तापमान रिकॉर्ड करने और अपनी मेडिकल जांच की अनुमति देने की सहज इच्छा रखने वाली जनता के बल पर चीनी अधिकारियों ने न केवल शीघ्रता से यह पता कर लिया कि कौन व्यक्ति कोरोना वायरस का संभावित वाहक है बल्कि वह उन पर नज़र भी रख रहे थे कि वे किस-किस के संपर्क में आते हैं। कई सारे ऐसे मोबाइल ऐप्स हैं जो नागरिकों को संक्रमित व्यक्ति के आसपास मौजूद होने के बारे में चेतावनी देते हैं।

कोरोनावायरस को रोकने के लिए चीन ने सबसे पहले ‘कलर कोडिंग टेक्नॉलॉजी’ का इस्तेमाल किया है। इस सिस्टम के लिए चीन की दिग्गज टेक कंपनी अलीबाबा और टेनसेंट ने साझेदारी की है। यह सिस्टम स्मार्टफोन ऐप के रूप में काम करता है। इसमें यूज़र्स को उनकी यात्रा के दौरान उनकी मेडिकल हिस्ट्री के मुताबिक ग्रीन, येलो और रेड कलर का क्यूआर कोड दिया जाता है। ये कलर कोड ही यह निर्धारित करते हैं कि यूज़र को क्वॉरेंटाइन किया जाना चाहिए या फिर उसे सार्वजनिक स्थान पर जाने की इजाज़त दी जानी चाहिए। चीनी सरकार ने इस सिस्टम के लिए कई चेक पॉइंट्स बनाए हैं, जहां लोगों की चेकिंग होती हैं। यहां उन्हें उनकी यात्रा और मेडिकल हिस्ट्री के मुताबिक क्यूआर कोड दिया जाता है। अगर किसी को ग्रीन कलर का कोड मिलता है, तो वह इसका उपयोग कर किसी भी सार्वजनिक स्थान पर जा सकता है। तो दूसरी तरफ अगर किसी को लाल कोड मिलता है, तो उसे क्वारेंटाइन कर दिया जाता है। इस सिस्टम का इस्तेमाल 200 से ज़्यादा चीनी शहरों में हुआ है। भारत में भी ऐप आधारित कलर कोडिंग टेक्नॉलॉजी विकसित करने के प्रयास ज़ोर-शोर से किए जा रहे हैं।

भारत में भी रेलवे स्टेशनों, हवाई अड्डों और अन्य सार्वजनिक क्षेत्रों के अधिकारी दूर से तापमान रिकॉर्ड करने के लिए स्मार्ट थर्मल स्कैनर का इस्तेमाल कर रहे हैं। इस तरह संभावित कोरोना वायरस वाहक की पहचान करने में आसानी हो रही है। भारत में बाज़ार-केंद्रित हेल्थ टेक स्टार्टअप कंपनियां भी रोग के निदान के लिए नवाचार की ओर कमर कस रही हैं, इससे हेल्थ केयर सिस्टम पर दबाव कम हो रहा है। कन्वर्जेंस कैटालिस्ट के संस्थापक जयंत कोल्ला बैंगलुरु स्थित स्टार्टअप, वनब्रोथ का उदाहरण देते हैं। इसने सस्ते और टिकाऊ वेंटिलेटर विकसित किए हैं। ये भारत की ग्रामीण आबादी को ध्यान में रखकर किया गया है, जहां अस्पतालों और डॉक्टरों तक पर्याप्त पहुंच का अभाव है। एक अन्य बैंगलुरु-आधारित स्टार्टअप डे-टु-डे ने घर पर क्वारेंटाइन रोगियों को विभिन्न सुविधाओं और अस्पतालों में रखने के लिए एक केयर मैनेजमेंट सॉल्यूशन विकसित किया है और इसके ज़रिए बाद में निदान गतिविधियों जैसे कि स्वास्थ्य जांच, आहार, अनुवर्ती परीक्षण आदि को भी पूरा किया जाता है।

चीन सहित विभिन्न देशों ने कोरोना वायरस को मात देने के लिए रोबोट का इस्तेमाल किया है। ये रोबोट होटल से लेकर ऑफिस तक में साफ-सफाई का काम करते हैं और साथ ही आस-पास की जगह पर सैनिटाइज़र का छिड़काव भी करते हैं। वहीं, दूसरी तरफ चीन की कई टेक कंपनियां भी इन रोबोट का उपयोग मेडिकल सैंपल भेजने के लिए करती थीं। कोरोना वायरस को रोकने के लिए चीन ने ड्रोन का इस्तेमाल किया है। साथ ही इन ड्रोन्स के ज़रिए चीनी सरकार ने लोगों तक फेस मास्क और दवाइयां पहुंचाई हैं। इसके अलावा इन डिवाइसेस के ज़रिए कोरोना वायरस से संक्रमित क्षेत्रों में सैनिटाइजर का छिड़काव भी किया गया है।

कोरोना वायरस को ट्रैक करने के लिए फेस रिकॉग्निशन सिस्टम का इस्तेमाल बेहद कारगर साबित हो रहा है। इस सिस्टम में इंफ्रारेड डिटेक्शन तकनीक मौजूद है, जो लोगों के शरीर के तापमान जांचने में मदद करती है। इसके अलावा फेस रिकॉग्निशन सिस्टम यह भी बताता है कि किसने मास्क पहना है और किसने नहीं।

वैज्ञानिक कोरोना के टीके और दवाई विकसित करने के लिए आर्टिफिशियल इंटेलीजेंस (एआई) का इस्तेमाल कर रहें हैं। ध्यान देने वाली बात यह है कि एंटीबायोटिक दवाओं के बैक्टीरिया पर घटते असर को ध्यान में रखते हुए पिछले कुछ वर्षों से वैज्ञानिक एआई की मदद से ऐसे प्लेटफॉर्म तैयार करने की कोशिश रहे हैं जिससे नए किस्म की दवाओं की खोज की जा सके और एंटीबायोटिक दवाओं को बेअसर करने वाले बैक्टीरिया का खात्मा किया जा सके। हाल ही में वैज्ञानिक समुदाय को इस दिशा में एक बड़ी कामयाबी हासिल हुई है। अमेरिका के एमआईटी के वैज्ञानिकों ने आर्टिफिशिल इंटेलीजेंस (एआई) के मशीन-लर्निंग एल्गोरिदम की मदद से पहली बार एक नया और बेहद शक्तिशाली एंटीबायोटिक तैयार किया है। शोधकर्ताओं का दावा है कि इस एंटीबायोटिक से तमाम घातक बीमारियों को पैदा करने वाले बैक्टीरिया को भी मारा जा सकता है। इसको लेकर दावे इस हद तक किए जा रहे हैं कि इस एंटीबायोटिक से उन सभी बैक्टीरिया का खात्मा किया जा सकता है जो सभी ज्ञात एंटीबायोटिक दवाओं के खिलाफ प्रतिरोधी क्षमता हासिल कर चुके हैं। इस नए एंटीबायोटिक की खोज ने आर्टिफिशियल इंटेलीजेंस की मदद से कोरोना के खिलाफ एक कारगर एंटी वायरल दवा विकसित करने की वैज्ञानिकों की उम्मीदों को बढ़ा दिया है।

कुल मिलाकर हम कह सकते हैं कि आज टेक्नॉलॉजी ने किसी महामारी से लड़ने के लिए हमारी क्षमताओं को काफी हद तक बढ़ा दिया है। जिसकी बदौलत हम परंपरागत रक्षात्मक उपायों को करते हुए महामारी के विरुद्ध कारगर ढंग से लड़ने में सक्षम हुए हैं।(स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.scientificamerican.com/sciam/cache/file/45907C19-26EE-4F33-A692839E8348B3F5_source.jpg?w=590&h=800&384A6689-9106-44AC-95961FAAE8D57C31