कार्बन, हाइड्रोजन, ऑक्सीजन, फॉस्फोरस के समान नाइट्रोजन भी एक ज़रूरी पोषक तत्व है। पृथ्वी के वायुमंडल में लगभग 80 प्रतिशत नाइट्रोजन है लेकिन मज़ेदार बात है कि पेड़-पौधे इसका उपयोग तब तक नहीं कर सकते जब तक कि इसे यौगिकों में न बदल दिया जाए। नाइट्रोजन स्थिरीकरण का यह अत्यंत महत्वपूर्ण काम पृथ्वी पर सिर्फ आर्किया और बैक्टीरिया समूह के सूक्ष्मजीव कर पाते हैं और इन्हीं की बदौलत नाइट्रोजन पेड़-पौधों को मिलती है। लेकिन हालिया अध्ययन से पता चला है कि एक शैवाल भी यह काम कर सकती है।
हाल ही में वैज्ञानिकों ने पहली ऐसी शैवाल की खोज की है जो उसमें पाए जाने वाली एक छोटी कोशिका संरचना की बदौलत हवा की नाइट्रोजन को उपयोगी रूप में बदल सकती है। नाइट्रोजन सजीवों की वृद्धि एवं जीवन क्रियाओं के लिए एक अनिवार्य तत्व है लेकिन पेड़-पौधे, शैवाल वगैरह तात्विक नाइट्रोजन का उपयोग नहीं कर सकते, बल्कि तभी कर सकते हैं जब वह यौगिकों के रूप में मिले। शोधकर्ताओं ने इस शैवाल में पाई गई इस संरचना को अंगक यानी ऑर्गेनेल कहा है। और इसे नाम दिया गया है नाइट्रोप्लास्ट।
यह शोध अप्रैल 2023 में साइंस जर्नल में प्रकाशित हुआ था। शोधकर्ताओं के अनुसार जेनेटिक इंजीनियरिंग की तकनीक से इस संरचना के जीन्स को पौधों में रोप दिया जाए तो वे स्वयं नाइट्रोजन को परिवर्तित करने में सक्षम हो सकते हैं। इससे फसलों की पैदावार बढ़ सकती है और रासायनिक उर्वरकों पर निर्भरता कम हो सकती है।
अध्ययन के एक सह लेखक कैलिफोर्निया विश्वविद्यालय के समुद्री पारिस्थितिक वैज्ञानिक के. जोनाथन ज़ेहर कहते हैं कि अब तक पाठ्यपुस्तकों के अनुसार नाइट्रोजन स्थिरीकरण (यानी नाइट्रोजन तत्व को यौगिकों में बदलने) की क्षमता केवल बैक्टीरिया और आर्किया समूह में ही पता थी। ये प्रोकैरियोटिक जीव हैं। कोशिका बनावट के आधार पर जीव दो तरह के होते हैं – प्रोकैरियोट (जिनमें केंद्रक नहीं पाया जाता) और यूकैरियोट (जिनमें सुस्पष्ट केंद्रक पाया जाता है और जेनेटिक पदार्थ केंद्रक में होता है)। उनका अध्ययन बताता है कि शैवाल की यह प्रजाति पहला यूकैरियोटिक जीव है जिसमें नाइट्रोजन स्थिरीकरण की क्षमता है। यूकैरियोटिक जीवों में पौधे और जंतु शामिल हैं।
2012 में ज़ेहर के शोधदल ने बताया था कि ब्रारुडोस्फेरा बिगलोवी (Braarudosphaera bigelowii) नामक एक समुद्री शैवाल UCYN-A नाम के बैक्टीरिया से करीबी रूप से जुड़ा रहता है। लगता था कि यह बैक्टीरिया शैवाल की कोशिका के अंदर या उसके ऊपर रहता है। शोधकर्ताओं का अनुमान था कि यह बैक्टीरिया नाइट्रोजन गैस को अमोनिया जैसे यौगिकों में बदल देता है जिसका उपयोग शैवाल अपनी वृद्धि में करता है। माना गया था कि नाइट्रोजन के बदले में बैक्टीरिया को शैवाल से कार्बनिक ऊर्जा स्रोत अर्थात पोषक पदार्थ मिलते होंगे।
लेकिन नवीनतम अध्ययन के आधार पर शोधकर्ताओं का निष्कर्ष है कि UCYN-A बैक्टीरिया को एक स्वतंत्र जीव के रूप में नहीं बल्कि इस शैवाल के अंदर रहने वाले एक अंगक के रूप में देखा जाना चाहिए।
ज़ेहर का कहना है कि एक पूर्व अध्ययन में किए गए जेनेटिक विश्लेषण के अनुसार इस शैवाल और बैक्टीरिया के पूर्वजों के बीच लगभग 10 करोड़ वर्ष पूर्व एक सहजीवी सम्बंध स्थापित हुआ था। इस सहजीवी सम्बंध ने अंतत: एक अंगक का रूप ले लिया है – नाइट्रोप्लास्ट। यह अब ब्रारुडोस्फेरा बिगलोवी शैवाल के अंदर विराजमान है।
इसे अंगक क्यो कहें?
आखिर किसी कोशिका के अंदर रहने वाले जीव को स्वतंत्र जीव न मानकर अंगक क्यों माना जाए? किसी मेज़बान कोशिका के अंदर रहने वाला बैक्टीरिया अंगक है या नहीं, यह तय करने के लिए दो प्रमुख मापदंडों का उपयोग किया जाता है। पहला तो यह है कि विचाराधीन कोशिका संरचना (बैक्टीरिया) मेज़बान कोशिका में पीढ़ी-दर-पीढ़ी साथ चलना चाहिए। अर्थात जब मेज़बान कोशिका विभाजित होकर दो कोशिकाएं बनें तो दोनों में वह संरचना पहुंचनी चाहिए।
दूसरी कसौटी यह है कि वह संरचना मेज़बान कोशिका द्वारा मिलने वाले प्रोटीन पर निर्भर होना चाहिए।
नाइट्रोप्लास्ट इन दोनों मापदंडों पर खरा पाया गया है। इस कोशिका के विभाजन के विभिन्न चरणों में दर्जनों शैवाल कोशिकाओं की इमेजिंग करके शोधकर्ताओं ने पाया कि मेज़बान कोशिका के विभाजन के ठीक पूर्व नाइट्रोप्लास्ट दो भागों में विभाजित हो जाता है। इस तरह यह नाइट्रोप्लास्ट मूल कोशिका से उसकी संतान कोशिकाओं में स्थानांतरित होता रहता है।
यह ठीक वैसा ही है जैसा कि कोशिका में उपस्थित अन्य अंगकों में होता है। उल्लेखनीय है कि क्लोरोप्लास्ट और माइटोकॉण्ड्रिया भी अंगक ही हैं और उनमें भी कोशिका विभाजन के दौरान ऐसा ही होता है। इसके अलावा क्रोमोप्लास्ट, एमायलोप्लास्ट आदि भी अंगक ही हैं। माना जाता है कि ये भी कभी स्वतंत्र रूप से रहने वाले जीव थे जो अब पौधों की कोशिकाओं में स्थाई रूप से बस गए हैं और पादप अंगक कहलाते हैं। क्लोरोप्लास्ट के कारण ही पौधों में प्रकाश संश्लेषण संभव हुआ है और माइटोकॉण्ड्रिया ऑक्सी-श्वसन क्रिया को संभव बनाता है।
शोधकर्ताओं ने यह भी पाया कि इस नाइट्रोप्लास्ट को सारे ज़रूरी प्रोटीन्स शैवाल की कोशिका से ही मिलते है। हालांकि नाइट्रोप्लास्ट मेज़बान कोशिका के आयतन का 8 प्रतिशत से ज़्यादा होता है लेकिन इसके पास वे मुख्य प्रोटीन ही नहीं होते जो प्रकाश संश्लेषण और आनुवंशिक पदार्थ बनाने के लिए ज़रूरी हैं। ये प्रोटीन उसे शैवाल से ही प्राप्त होते हैं।
आंतरिक सहजीवी
सर्व प्रथम एंड्रियास शिंपर ने सन 1883 में यह प्रस्ताव रखा था कि वर्तमान पेड़-पौधों की कोशिकाओं में पाया जाने वाला क्लोरोप्लास्ट कोशिकीय सहजीविता का एक उदाहरण है। इस परिकल्पना के अनुसार क्लोरोप्लास्ट उन सायनोबैक्टीरिया के वंशज हैं जो किसी जीव द्वारा भक्षण के दौरान कोशिका के अंदर ले लिए गए थे। किसी कारण से ये पचने से बच गए और अब वहां आंतरिक सहजीवी के रूप में निवास कर रहे हैं। सायनोबैक्टीरिया और क्लोरोप्लास्ट द्वारा निर्मित प्रोटीन में समानताओं के आधार पर इस परिकल्पना को बल मिलता है। समय के साथ यह आंतरिक सहजीवी स्वतंत्र रूप से रहने की क्षमता खो बैठे क्योंकि उनकी अनुवांशिक सूचनाओं (डीएनए) का एक बड़ा हिस्सा धीरे-धीरे मेज़बान कोशिका के केंद्रक में स्थानांतरित हो गया।
उपरोक्त तथ्यों के चलते क्लोरोप्लास्ट व माइटोकॉण्ड्रिया के लिए आंतरिक सहजीवी शब्द का उपयोग उचित ही लगता है। इन अंगों की आंतरिक झिल्ली प्रोटोक्लोरोफाइट की प्लाज़्मा झिल्ली से मिलती-जुलती है और बाहरी झिल्ली मेज़बान कोशिका की भित्ति से। यह सिद्धांत माइटोकॉण्ड्रिया की दोहरी दीवार की उपस्थिति को भी उचित रूप से समझाता है। माइटोकॉण्ड्रिया की बाहरी दीवार पर उपस्थित छिद्र (पोरिंस) भी इसका एक प्रमाण है। गौरतलब है कि पोरिंस कुछ बैक्टीरिया की बाहरी झिल्ली में भी पाए जाते हैं। इससे भी उनके आंतरिक सहजीवी होने की पुष्टि होती है। सायनोबैक्टीरिया सामान्य रूप से कई जंतुओं और पौधों के अंदर आज भी मिलते हैं।
पौधों में फेरबदल
ज़ेहर कहते हैं कि नाइट्रोप्लास्ट मेज़बान कोशिका के साथ कैसे तालमेल बैठाता है यह समझ में आने से जेनेटिक इंजीनियरिंग के प्रयासों में मदद मिलेगी। फसलों की पैदावार काफी हद तक नाइट्रोजन की सीमित उपलब्धि से प्रभावित होती है। जेनेटिक इंजीनियरिंग के ज़रिए यदि नाइट्रोप्लास्ट को कोशिकाओं में डाल दिया जाता है तो यह एक उल्लेखनीय उपलब्धि होगी। नाइट्रोप्लास्ट युक्त पौधे अपनी नाइट्रोजन सम्बंधी ज़रूरतें स्वयं पूरी कर सकेंगे। यदि ऐसा हो जाता है तो नाइट्रोजन आधारित कृत्रिम उर्वरकों जैसे यूरिया, अमोनियम आदि की आवश्यकता कम हो जाएगी। साथ ही रासायनिक उर्वरकों के मृदा और पर्यावरण पर होने वाले हानिकारक प्रभावों से भी काफी हद तक बचा जा सकेगा।
लेकिन नाइट्रोप्लास्ट को फसली पौधों में रोपना कोई आसान काम नहीं होगा। नाइट्रोप्लास्ट के जीन्स युक्त पादप कोशिकाओं को इस तरह से इंजीनियर करने की आवश्यकता होगी कि नाइट्रोप्लास्ट पादप कोशिका के साथ पीढ़ी-दर-पीढ़ी स्थानांतरित होते रहें। ऐसा क्लोरोप्लास्ट और माइटोकॉण्ड्रिया में तो प्राकृतिक रूप से होता रहता है। यदि नाइट्रोप्लास्ट के मामले में भी ऐसा हो पाता है तो कृषि जगत में एक क्रांतिकारी परिवर्तन का मार्ग प्रशस्त होगा। (स्रोत फीचर्स)
नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://i0.wp.com/www.sciencenews.org/wp-content/uploads/2024/04/041124_jb_nitroplasts_feat.jpg?fit=1030%2C580&ssl=1