बुलढाणा में फैली गंजेपन की समस्या

अर्पिता व्यास

पिछले दिनों महाराष्ट्र के बुलढाणा (buldhana) ज़िले के गांवों में लोगों में बालों के झड़ने (hair loss) की एक विचित्र घटना सामने आई। बुलढाणा ज़िले के शेगांव तालुका (shegaon council) में अचानक लोगों के बाल झड़ने लगे। यह महिलाओं और पुरुषों दोनों में देखा गया। गांव के लोग अटकलें लगाने लगे कि यह किसी वायरस (virus infection) की वजह से हो रहा है। तत्काल हुई जांचों में पता चला कि बोंडगांव और खातखेड़ के पानी में नाइट्रेट (nitrate contamination) काफी ज़्यादा मात्रा में है और साथ ही उसमें कुल घुलित लवण यानी TDS (Total dissolved solids) भी अधिक था। यह पता लगा कि पानी पीने के लिए सही नहीं है। यह अनुमान लगाया गया कि शायद यही बाल झड़ने का कारण हो सकता है।

लोगों में बाल झड़ने की घटनाएं बढ़ती जा रही थीं। 3 दिन में लगभग 51 व्यक्ति गंजे (sudden baldness) हो चुके थे। चिकित्सा विभाग ने उस क्षेत्र का एक सर्वे किया। त्वचा रोग विशेषज्ञ (dermatologists) भी गांव पहुंच गए। उन्होंने निष्कर्ष निकाला कि बाल झड़ना एक कवक (फफूंद) के संक्रमण (fungal infection) के कारण हो रहा है जो संदूषित पानी (contaminated water) से फैल रहा है। प्रभावित लोगों ने बताया कि इसकी शुरुआत बालों की जड़ों में खुजली (itching in scalp) होने से होती है, उसके बाद बाल पतले (thinning hair) होने लगते हैं। फिर 3 दिनों में पूरे बाल झड़ जाते हैं और पूरी तरह गंजापन (complete baldness) आ जाता है। यहां तक कि दाढ़ी के बाल भी गिर जाते हैं।

हालांकि संदूषित पानी को ही कारण माना जा रहा था फिर भी जांच आगे जारी रखी गई। त्वचा और पानी के नमूने जांच के लिए भेजे गए। पानी के अत्यधिक संदूषित (highly contaminated water) होने के कारण उसका उपयोग प्रतिबंधित करके गांव वालों के लिए दूसरे स्रोतों से पानी उपलब्ध करवाया गया। अन्य स्रोत से पानी देने लगे तो लगा कि अब और मामले नहीं बढ़ेंगे लेकिन मामले तो बढ़ते ही जा रहे थे।

पूर्व में भारतीय चिकित्सा अनुसंधान परिषद (ICMR – Indian Council of Medical Research) से आई टीम ने जांच में पाया था कि प्रभावित लोगों में सेलेनियम (selenium poisoning) की मात्रा अधिक है जो शायद बालों के झड़ने का कारण है। सेलेनियम राशन की दुकान से वितरित गेहूं (contaminated wheat) में अधिक पाया गया था। अलबत्ता, टीम ने पक्का निष्कर्ष नहीं दिया था कि यही बाल झड़ने का कारण है। गेहूं के नमूने जांच के लिए वारणी एनालिटिक्स लैब, ठाणे पहुंचाए गए। वहां बिना धुले गेहूं में सेलेनियम 14.52 मि.ग्रा./कि.ग्रा पाया गया और धुले हुए गेहूं में 13.61 मि.ग्रा./कि.ग्रा जबकि गेहूं में सेलेनियम की सामान्य मात्रा 0.1 से 1.9 मि.ग्रा./कि.ग्रा होती है। यानी इस गेहूं में सेलेनियम की मात्रा सामान्य अधिकतम मात्रा से 8 गुना अधिक थी। राशन के गेहूं के पैकेट्स को चेक किया गया तो देखा कि ये पंजाब से आए थे। Text Box: बालों का झड़ना
बालों का असामान्य रूप से झड़ना एलोपेशिया कहलाता है। यह सिर या पूरे शरीर पर हो सकता है। यह अल्पकालिक या फिर हमेशा के लिए भी हो सकता है। एलोपेशिया का शिकार कोई भी हो सकता है, लेकिन यह पुरुषों में ज़्यादा आम है। 
एलोपेशिया के कारण 
हार्मोन में बदलाव -  कुपोषण (विटामिन और मिनरल की कमी), कोई एन्डोक्राइन रोग, बर्थ कंट्रोल दवाइयों का बंद या शुरू करना, गंभीर संक्रमण या किसी दवाई के साइड इफेक्ट से ऐसी स्थिति बन सकती है। 
मेडिकल अवस्था - व्यक्ति का प्रतिरक्षा तंत्र बालों की जड़ों पर हमला कर देता है और बाल झड़ने लगते है; रेडिएशन या कीमोथेरपी के कारण बाल झड़ते हैं लेकिन ट्रीटमेंट खत्म होने पर बाल वापस आ जाते हैं; शारीरिक या मानसिक आघात की वजह से बाल झड़ सकते हैं; फफूंद का संक्रमण हो सकता है।
आनुवंशिक - किसी आनुवंशिक कारण से महिला और पुरुषों दोनों के बाल झड़ सकते हैं। 
कसकर बांधना - बालों को अत्यधिक खींचकर बांधने से भी बाल झड़ते हैं।
उम्र बढ़ना - उम्र के साथ गंजेपन का मुख्य कारण आनुवंशिकी है। 
American Academy of Dermatology के अनुसार हमारे 50–100 बाल तो हर दिन झड़ते हैं, लेकिन सिर पर मौजूद 1,00,000 बालों में से इतने कम बाल झड़ जाने से फर्क पता नहीं चलता और नए बाल इनकी जगह ले लेते हैं। बालों का झड़ना साल दर साल बढ़ सकता है या फिर अचानक भी हो सकता है, यह बाल झड़ने के कारण पर निर्भर करता है। जब एलोपेशिआ होता है तो ये लक्षण दिखने लगते हैं: 
मांग चौड़ी होना – बालों के बीच काफी जगह बन जाती है यानी नए बाल उगकर पुराने बालों की जगह नहीं ले पाते। 
केश-रेखा पीछे सरकना – माथे पर जहां से आपके बाल शुरू होते है उस रेखा का पीछे चले जाना। 
सर पर छोटे-छोटे चांद दिखाई देना – ये चांद समय के साथ आकार में बढ़ रहे हों।
गुच्छों में बाल झड़ना – बाल धोने के बाद मोहरी आपके बालों से भर गई हो।

इसी तरह, 2000 के दशक के शुरू में पंजाब के दो ज़िलों होशियारपुर और नवांशहर में भी बालों के झड़ने (hair fall epidemic) की घटनाएं हुई थीं। ये दोनों ज़िले शिवालिक पर्वतों की तराई में स्थित हैं। तब यहां सेलेनियम नदियों की बाढ़ से आए पानी के साथ आया था।

एक अन्य रिपोर्ट में प्रभावित लोगों के खून में ज़िंक की कमी (zinc deficiency) भी पाई गई जो बालों की वृद्धि (hair growth) के लिए उत्तरदायी है। सेलेनियम की वृद्धि और ज़िंक की कमी, दोनों कारणों से बाल झड़ने की घटनाएं हुई। 15 गांव के लगभग 300 लोग प्रभावित हुए। अच्छी बात यह है कि कुछ वक्त में लोगों के बाल वापस आ गए क्योंकि बालों की जड़ें सलामत थीं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.punemirror.com/full/9cf1f401-a3a1-4e06-9677-3c46ea5519a2.jpg

महासागरों में अम्लीयता बढ़ने के जलवायु पर असर

हासागर (Oceans) वातावरण से कार्बन डाईऑक्साइड (Carbon Dioxide) को अवशोषित कर जलवायु परिवर्तन (Climate Change) की गति को धीमा करने में मदद करते हैं। कार्बन डाईऑक्साइड सोखने पर समुद्रों (Seas) का पानी अधिक अम्लीय (Ocean Acidification) हो जाता है। एक नए अध्ययन (New Research) में चेतावनी दी गई है कि अगले 50 वर्षों में बढ़ती अम्लीयता के कारण महासागरों की कार्बन डाईऑक्साइड सोखने की क्षमता कमज़ोर हो सकती है, जिससे ग्लोबल वार्मिंग (Global Warming) में वृद्धि होगी।

इस संदर्भ में वनस्पति-प्लवकों (Phytoplankton) की भूमिका महत्वपूर्ण है। वनस्पति-प्लवक सूक्ष्म एक-कोशिकीय जीव (Microorganisms) हैं, जो समुद्र की सतह के पास तैरते रहते हैं। वे सूर्य के प्रकाश का उपयोग करके कार्बन डाईऑक्साइड को जैविक पदार्थ में बदलते हैं। कार्बन डाईऑक्साइड जज़्ब करने की उनकी क्षमता का अंदाज़ इसी बात से लगाया जा सकता है कि वे लगभग उतनी ही कार्बन डाईऑक्साइड सोखते हैं जितनी थलचर पेड़-पौधे (Terrestrial Plants) सोखते हैं।

और मरने के बाद वनस्पति-प्लवक समुद्र के पेंदे में बैठ जाते हैं, और इस तरह से कार्बन समुद्र की गहराई (Deep Ocean Carbon Storage) में हज़ारों वर्षों के लिए संग्रहित हो जाता है। यह प्राकृतिक प्रक्रिया पृथ्वी के जलवायु संतुलन (Climate Balance) को बनाए रखने में महत्वपूर्ण भूमिका निभाती है।

लेकिन, कार्बन डाईऑक्साइड के घुलने से समुद्री जल अधिक अम्लीय हो जाता है। पिछले 170 वर्षों में, मानवीय गतिविधियों (Human Activities) के कारण वायुमंडल में कार्बन डाईऑक्साइड का स्तर 280 से बढ़कर 420ppm हो गया है, जिससे समुद्र की अम्लीयता लगभग 30 प्रतिशत बढ़ गई है। यह अम्लीयता विशेष रूप से बड़े वनस्पति-प्लवकों के विकास को बाधित कर सकती है, जिससे महासागरों की कार्बन डाईऑक्साइड अवशोषित करने की क्षमता घट सकती है।

वनस्पति-प्लवकों पर बढ़ती अम्लीयता के प्रभाव को लेकर हुए पूर्व अध्ययनों (Previous Studies) के नतीजों में भिन्नता रही है। कुछ शोधों (Scientific Research) में पाया गया कि पोषक तत्वों से भरपूर तटीय क्षेत्रों में कुछ वनस्पति-प्लवकों की संख्या बढ़ सकती है, लेकिन ये शोध छोटे क्षेत्रों तक सीमित थे।

इस समस्या को हल करने के लिए, प्रिंसटन विश्वविद्यालय (Princeton University) के फ्रांस्वा मोरेल और जियामेन विश्वविद्यालय (Xiamen University) के डालिन शी के नेतृत्व में वैज्ञानिकों (Scientists) ने एक बड़ा महासागर सर्वेक्षण (Ocean Survey) किया। उन्होंने छह वर्षों तक प्रशांत महासागर (Pacific Ocean) और दक्षिणी चीन सागर (South China Sea) में 45 जगहों से पानी के नमूने इकट्ठा किए। प्रयोगों में उन्होंने अलग-अलग स्थानों से प्राप्त नमूनों में कार्बन डाईऑक्साइड का स्तर कृत्रिम रूप से बढ़ाया ताकि यह देखा जा सके कि यदि वायुमंडलीय कार्बन डाईऑक्साइड 700 ppm तक पहुंचती है (जो 2075 से 2100 के बीच संभव है), तो वनस्पति-प्लवकों पर क्या प्रभाव पड़ेगा। वैज्ञानिकों ने दो प्रमुख प्रकार के वनस्पति-प्लवकों पर अध्ययन किया: छोटे बैक्टीरियल वनस्पति-प्लवक (Bacterial Phytoplankton), जो पोषक तत्वों की कमी में भी जीवित रहने में सक्षम होते हैं; और बड़े केंद्रकधारी वनस्पति-प्लवक, जिन्हें अधिक पोषक तत्वों की आवश्यकता होती है और वे पर्यावरण में बदलाव के प्रति अधिक संवेदनशील होते हैं।

अध्ययन के निष्कर्ष (Study Findings) चौंकाने वाले थे। छोटे बैक्टीरियल वनस्पति-प्लवकों पर अम्लीयता का कोई खास प्रभाव नहीं पड़ा, लेकिन बड़े वनस्पति-प्लवकों की वृद्धि उष्णकटिबंधीय क्षेत्रों (Tropical Regions) में गर्मियों के दौरान 30 प्रतिशत तक घट गई, जबकि इस समय उनकी वृद्धि अधिक होनी चाहिए थी। ठंडे, पोषक तत्वों से भरपूर क्षेत्रों में यह प्रभाव थोड़ा कम था, क्योंकि गहरे समुद्र से पोषक तत्व ऊपर आते रहते हैं।

वैज्ञानिकों ने यह भी पाया कि महासागर की अम्लीयता (Ocean Acidification Effects) का वनस्पति-प्लवकों पर प्रभाव नाइट्रोजन (Nitrogen Availability) की उपलब्धता से जुड़ा है। नाइट्रोजन वनस्पति-प्लवकों के विकास के लिए एक आवश्यक पोषक तत्व है। जिन क्षेत्रों में पहले से ही नाइट्रेट की मात्रा कम थी, वहां बढ़ती अम्लीयता ने समस्या को और बढ़ा दिया, जिससे बड़े वनस्पति-प्लवकों का विकास कठिन हो गया।

जब इन नमूनों में नाइट्रेट (nitrate) मिलाया गया, तो वनस्पति-प्लवकों की वृद्धि फिर से बढ़ गई। इसका मतलब है कि अम्लीयता (acidification) किसी न किसी तरह वनस्पति-प्लवकों के लिए नाइट्रोजन (nitrogen) को ग्रहण करना मुश्किल बना देती है।

यदि महासागर की अम्लीयता वनस्पति-प्लवकों को प्रभावित करती रही तो इसके गंभीर परिणाम (Severe Consequences) हो सकते हैं। अध्ययन के अनुसार, अगले 50 वर्षों में वनस्पति-प्लवकों की धीमी वृद्धि के कारण महासागर हर साल लगभग 5 ट्रिलियन किलोग्राम कम कार्बन डाईऑक्साइड अवशोषित करेंगे। इससे वातावरण में कार्बन डाईऑक्साइड का स्तर बढ़ेगा और जलवायु परिवर्तन की गति तेज़ हो सकती है।

समस्या को और बढ़ाने वाला एक अन्य कारक बढ़ता समुद्री तापमान (Rising Ocean Temperature) है। गर्म सतही जल (Surface Water) ठंडे, पोषक तत्वों से भरपूर गहरे जल (Deep Ocean Water) के साथ मिश्रित नहीं हो पाता, जिससे सतह पर पोषक तत्वों की कमी हो जाती है। उपग्रह डैटा (satellite data) से पता चला है कि उष्णकटिबंधीय महासागरों में कम पोषक तत्वों वाले क्षेत्र तेज़ी से फैल रहे हैं। 1998 से 2006 के बीच, कम क्लोरोफिल (chlorophyll वनस्पति-प्लवकों की मात्रा का एक प्रमुख संकेतक) वाले क्षेत्र 15 प्रतिशत बढ़ गए। यदि अम्लीयता पोषक तत्व की कमी को और बढ़ाती है तो महासागरीय पारिस्थितिकी तंत्र पर ‘दोहरा आघात’ होगा।

कुछ वैज्ञानिकों का मानना है कि अभी यह कहना जल्दबाज़ी होगी कि वनस्पति-प्लवकों की घटती संख्या निश्चित रूप से महासागर की कार्बन डाईऑक्साइड अवशोषित करने की क्षमता (Carbon Sequestration) को कम करेगी। संभव है कि ठंडे क्षेत्रों, जहां पोषक तत्व अधिक उपलब्ध हैं, में वनस्पति-प्लवक तेज़ी से बढ़ें और उष्णकटिबंधीय क्षेत्रों के नुकसान की भरपाई कर दें। लेकिन, समुद्र वैज्ञानिक मैट चर्च कहते हैं कि समग्र रूप से पृथ्वी के कार्बन चक्र पर इसका सकारात्मक प्रभाव पड़ने की संभावना बहुत कम है।

वैज्ञानिक और अधिक शोध (Further Research) की ज़रूरत पर ज़ोर दे रहे हैं। बहरहाल, इतना स्पष्ट है कि हम जितनी अधिक कार्बन डाईऑक्साइड वातावरण में छोड़ेंगे, महासागरों का संतुलन उतना ही डगमगाएगा। इसलिए कार्बन डाईऑक्साइड उत्सर्जन (CO₂ Emissions) को कम करना अब पहले से कहीं अधिक ज़रूरी हो गया है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.z30nzc9/full/_20250310_on_plankton-1741634337047.jpg

चंद्रमा की उम्र लगभग पृथ्वी के बराबर है!

हाल में प्रस्तुत एक अध्ययन का निष्कर्ष है कि पृथ्वी (Earth) के अस्तित्व में आने के थोड़े समय बाद से ही चंद्रमा (Moon) उसका साथी रहा है। यह नया शोध बताता है कि चंद्रमा का जन्म सौर मंडल (Solar System) बनने के महज 6.5 करोड़ साल बाद ही हो गया था। यानी चंद्रमा की उम्र करीब 4.5 अरब साल है, जो पहले के अनुमानों से अधिक है।

ल्यूनर एंड प्लैनेटरी साइंस कॉन्फ्रेंस (LPSC) में प्रस्तुत इस शोध में बताया गया है कि चंद्रमा का निर्माण पृथ्वी के बनने के तुरंत बाद हुआ था, जब मंगल ग्रह (Mars) के साइज़ जितना एक प्रोटो-प्लैनेट (Proto-planet) ‘थीया’ (Theia) पृथ्वी से टकराया था।

गौरतलब है कि सौर मंडल (Solar System) का निर्माण लगभग 4.56 अरब वर्ष पहले शुरू हुआ, और इसके 2-3 करोड़ साल बाद पृथ्वी आकार लेने लगी। उस समय अंतरिक्ष (Space) में भारी हलचल थी और बड़े-बड़े खगोलीय पिंडों की टक्कर एक आम बात थी। इन्हीं में से एक टक्कर युवा पृथ्वी से थीया नामक पिंड के टकराने की थी। यह टक्कर इतनी भीषण थी कि पृथ्वी से भारी मात्रा में पिघली हुई चट्टान और मलबा अंतरिक्ष में उछला, जो बाद में संघनित होकर चंद्रमा बना।

यह घटना पृथ्वी के विकास में भी महत्वपूर्ण रही। इस टक्कर से पृथ्वी की सतह पिघलकर खौलते मैग्मा के महासागर में बदल गई और इसने पृथ्वी के घूर्णन और झुकाव को स्थिर करने में मदद की। इसलिए चंद्रमा के निर्माण का सटीक समय जानकर वैज्ञानिक यह समझ सकते हैं कि पृथ्वी अपने वर्तमान रूप में कब आई।

चंद्रमा की उम्र कैसे तय की?

कई वर्षों से वैज्ञानिक अपोलो मिशनों (Apollo Missions) द्वारा लाई गईं चंद्रमा की चट्टानों (Lunar Rocks) का अध्ययन करते आ रहे हैं। पूर्व में, जब वैज्ञानिकों ने चट्टानों का अध्ययन किया था तो पता चला था कि चंद्रमा की सतह से प्राप्त चट्टानें लगभग 4.35 अरब साल पुरानी थीं और ये चट्टानें चांद के अपने मैग्मा (Lunar Magma) से बनी थीं। तो माना गया कि चांद की उम्र लगभग उतनी ही है। लेकिन इतना युवा चंद्रमा बाकी प्रमाणों से मेल नहीं खाता।

इस पहेली को सुलझाने में बड़ी सफलता तब मिली जब वैज्ञानिकों ने चंद्रमा से मिले ज़िरकॉन क्रिस्टलों (Zircon Crystals) का अध्ययन किया। इन क्रिस्टल के रेडियोधर्मी तत्वों के विघटन से उनकी सही उम्र का पता लगाया जा सकता है। 2017 में, भू-रसायन वैज्ञानिक मेलानी बारबोनी ने आठ ज़िरकॉन रवों का विश्लेषण करके यह देखा कि इनमें मौजूद युरेनियम (Uranium) के विघटन से कितना लेड (Lead) बन चुका है। इस मापन के आधार पर बारबोनी ने निष्कर्ष निकाला कि चंद्रमा 4.51 अरब साल पुराना है।

2019 में, वैज्ञानिकों को चंद्रमा की चट्टानों में टंगस्टन (Tungsten) के हल्के आइसोटोप मिले। उस अध्ययन के मुखिया मैक्सवेल थीमेन्स ने अनुमान लगाया कि ये आइसोटोप तत्व हाफ्नियम (Hafnium) के अब विलुप्त हो चुके आइसोटोप से बने होंगे। और हाफ्नियम का यह आइसोटोप सौर मंडल के शुरू के 6 करोड़ वर्षों में ही उपस्थित था। इस खोज ने बारबोनी के निष्कर्षों को मज़बूती दी। यानी चंद्रमा उन वर्षों में बना होगा।

अब, वैज्ञानिकों ने रुबिडियम(rubidium) के स्ट्रॉन्शियम(strontium) में विघटन को मापने की एक नई विधि से इस निष्कर्ष  की पुष्टि की है। मैक्स प्लैंक इंस्टीट्यूट के थॉर्स्टन क्लाइन और उनकी टीम ने गणना की कि चंद्रमा लगभग 4.5 अरब साल पहले बना था। ये नतीजे पिछले शोधों को पुख्ता करते हैं और चंद्रमा के जन्म की एक सुसंगत समयरेखा देते हैं।

चंद्रमा बनने के बाद भी यह कोई शांत खगोलीय पिंड नहीं था। आरंभ में इसकी पूरी सतह पिघले हुए लावा के महासागर (lava ocean) से ढंकी थी, जो धीरे-धीरे ठंडी होकर ठोस बन गई। लेकिन शोध बताते हैं कि पृथ्वी और सूर्य के गुरुत्वाकर्षण प्रभाव ने इसकी सतह को दोबारा गर्म कर दिया, ठीक वैसे ही जैसे बृहस्पति (Jupiter) के असर से उसके चंद्रमा ‘आयो’(Io) पर भीषण ज्वालामुखीय गतिविधि देखी जाती है। एक अन्य सिद्धांत के अनुसार, चंद्रमा के दक्षिणी ध्रुव (lunar south pole) पर किसी विशाल उल्कापिंड की टक्कर (asteroid impact) ने इसकी सतह को नया रूप दिया होगा। इनमें से किसी एक वज़ह से चंद्रमा की उम्र का सही अनुमान लगाना जटिल हो गया। अपोलो द्वारा लाए गए नमूनों को इस नए दृष्टिकोण से देखने की ज़रूरत है। हो सकता है कि वे पिघलकर वापिस ठोस बन गए चंद्रमा के होंगे, मूल रूप में निर्मित चंद्रमा के नहीं।

चीन का चांग’ई-6 मिशन (Chang’e 6 Mission), जो चंद्रमा की दूरस्थ सतह से लगभग 2 किलोग्राम चट्टानें लेकर लौटा है, इस रहस्य पर और प्रकाश डाल सकता है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://cdn.mos.cms.futurecdn.net/TFybnnVtyKMfRutbyGcpdF.jpg.webp

चट्टानों में हवा के बुलबुलों में छिपा पृथ्वी का अतीत

रबों  वर्षों में पृथ्वी के वातावरण (Earth’s atmosphere) में काफी परिवर्तन हुए हैं, जिससे जीवन (life evolution) के विकास की दिशा तय हुई। वैज्ञानिकों (scientists) ने ध्रुवों पर जमा बर्फ की परतों से पिछले 60 लाख वर्षों का वायुमंडलीय डैटा (atmospheric data) निकाला है, लेकिन यह डैटा पृथ्वी (Earth) के 4.5 अरब साल के इतिहास का बहुत छोटा हिस्सा है।

प्राचीन समय में वायु में कौन-से घटक कितनी मात्रा में थे, इसका पता वैज्ञानिक केवल चट्टानों (rocks) और खनिजों (minerals) में छिपे अप्रत्यक्ष प्रमाणों से लगाते आए हैं। लेकिन अब, एक नई तकनीक (new technique) से अधिक सटीक जानकारी मिल रही है – प्राचीन चट्टानों, लवणों और लावा (lava) में फंसे सूक्ष्म वायु बुलबुलों (air bubbles) का विश्लेषण। 

वैज्ञानिक यह जानते हैं कि 4.5 अरब वर्ष पूर्व जब पृथ्वी का निर्माण (Earth formation) हुआ, तब उसकी सतह पिघली हुई चट्टानों (magma) से ढंकी थी। इस मैग्मा से रिसी गैसों, और आगे चलकर ज्वालामुखी विस्फोटों (volcanic eruptions), क्षुद्रग्रहों (asteroids) की बौछार के कारण मुक्त गैसों ने एक प्रारंभिक वातावरण (early atmosphere) बनाया। समय के साथ, नाइट्रोजन (nitrogen) अपनी स्थिरता के कारण मुख्य गैस बन गई, जबकि हाइड्रोजन (hydrogen) और हीलियम (helium) जैसी हल्की गैसें अंतरिक्ष में विलीन हो गईं। ऑक्सीजन (oxygen) लगभग न के बराबर थी, जब तक कि लगभग 3 अरब साल पूर्व प्रकाश-संश्लेषण (photosynthesis) करने वाले सूक्ष्मजीवों ने इसे धीरे-धीरे वातावरण में छोड़ना शुरू नहीं किया।

फिर, वैज्ञानिक यह भी जानते थे कि चट्टानों में प्राचीन वायु (ancient air) कैद हो सकती है, लेकिन इन गैसों को निकालना और विश्लेषण (gas analysis) करना बेहद कठिन था। अब, वैज्ञानिक एक वैक्यूम-सील प्रेस (vacuum-sealed press) में प्राचीन चट्टानों को धीरे-धीरे दाब बढ़ाते हुए कुचलते हैं, जिससे उसमें फंसी हुई गैस निकलती है। इस गैस का विश्लेषण मास स्पेक्ट्रोमीटर (mass spectrometer) से किया जाता है।

सर्वप्रथम भू-रसायनविद (geochemist) बर्नार्ड मार्टी ने 2010 के दशक में पश्चिमी ऑस्ट्रेलिया (Western Australia) के क्वार्ट्ज़ (quartz) और बैराइट भंडारों में फंसी गैस का विश्लेषण किया था। और पहली बार 3 अरब साल से भी अधिक पुराने वायुमंडलीय नमूने (atmospheric samples) उपलब्ध कराए। उसके बाद से इस तकनीक के इस्तेमाल से कई अध्ययन (research studies) हुए हैं। 

ऑक्सीजन की उपस्थिति : पहले वैज्ञानिक मानते थे कि लगभग 80 करोड़ साल पहले तक पृथ्वी के वातावरण में ऑक्सीजन बहुत कम थी, और तभी इसके स्तर में अचानक वृद्धि हुई, जिससे जंतुओं (animals) का विकास संभव हुआ। लेकिन विभिन्न अध्ययन (scientific studies) अलग-अलग निष्कर्ष देते हैं।

बोरिंग बिलियन: वैज्ञानिक 1.8 अरब से 80 करोड़ साल पहले के कालखंड को “बोरिंग बिलियन” (Boring Billion) कहते हैं, क्योंकि इस दौरान जलवायु (climate), टेक्टोनिक्स (tectonics) और जैव विकास (biological evolution) में कोई खास बदलाव नहीं दिखता था। लेकिन 1.4 अरब साल पुराने लवण (ancient salts) के क्रिस्टलों से पता चला है कि उस समय ऑक्सीजन स्तर अपेक्षा से अधिक था। इससे यह संकेत मिलता है कि जटिल जीवन (complex life) के विकास के लिए अनुकूल परिस्थितियां उस समय मौजूद रही होंगी।

नोबल गैसें : नोबल गैसें (noble gases), जैसे आर्गन (argon), नीऑन (neon) और ज़ीनॉन (xenon), रासायनिक रूप से अन्य तत्वों के साथ अभिक्रिया नहीं करतीं। इसलिए वे पृथ्वी के वायुमंडलीय परिवर्तनों (atmospheric changes) को समझने में उपयोगी होती हैं।

भारत में 2 अरब साल पुराने उल्कापिंड टकराव स्थल (meteorite impact site) के अध्ययन से पता चला है कि उस समय ज्वालामुखीय गतिविधि (volcanic activity) कई करोड़ वर्षों तक धीमी हो गई थी, जिससे पृथ्वी के आंतरिक भाग से गैसों का उत्सर्जन (gas emissions) भी कम हुआ। इसी प्रकार, ग्रीनलैंड (Greenland) की 3 अरब साल पुरानी चट्टानों में फंसी गैसों के अध्ययन से यह संकेत मिला कि ये गैसें प्राचीन पृथ्वी के मेंटल (Earth’s mantle) और समुद्री जल (ocean water) से आई थीं। ये खोजें (discoveries) हमें यह समझने में मदद करती हैं कि पृथ्वी का वायुमंडल (Earth’s atmosphere) कैसे बना और विकसित हुआ। इन खोजों के बावजूद, वैज्ञानिकों ने अभी केवल सतह को ही कुरेदा है। भविष्य की संभावनाएं (future possibilities) कई हैं। वे और भी प्राचीन चट्टानों के नमूने (ancient rock samples) इकट्ठा करेंगे, गैस निकालने की तकनीकों (gas extraction techniques) में सुधार करेंगे और यह पता लगाने की कोशिश करेंगे कि क्या ये वायुमंडलीय सुराग (atmospheric clues) जीवन की उत्पत्ति (origin of life) को समझने में मदद कर सकते हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.zhst73x/full/_20250307_on_ancientgases-1741297942210.jpg