डॉ. सुशील जोशी
इस वर्ष का चिकित्सा अथवा कार्यिकी क्षेत्र का नोबेल सम्मान दो वैज्ञानिकों – विक्टर एम्ब्रोस तथा गैरी रुवकुन – को संयुक्त रूप से कोशिका के कामकाज के नियमन सम्बंधी महत्वपूर्ण अनुसंधान के लिए दिया गया है।
यह तो आज जीव विज्ञान (biology research) में सर्वमान्य तथ्य है कि गुणसूत्र यानी क्रोमोसोम्स (chromosomes) सजीवों की कोशिकाओं के लिए एक निर्देश पत्र के समान होते हैं। इन गुणसूत्रों में डीऑक्सी रायबोन्यूक्लिक एसिड (डीएनए) (DNA structure) के रूप में सारी सूचनाएं अंकित होती हैं। प्रत्येक सूचना खंड को जीन (genes) कहते हैं। यह भी ज़ाहिर है कि किसी भी सजीव की सारी कोशिकाओं में एक-से गुणसूत्र पाए जाते हैं। अर्थात हर कोशिका में संचालन के लिए निर्देश पत्र (जीन्स) एक ही होता है। फिर भी हर किस्म की कोशिकाएं अलग-अलग काम करती हैं। तो यह कैसे संभव होता है? इसका जवाब जीन नियमन (gene regulation) की प्रक्रिया में निहित है। इसी के परिणामस्वरूप हर किस्म की कोशिका में जीन्स का अलग-अलग समुच्चय सक्रिय होता है।
एम्ब्रोस और रुवकुन ने जीन नियमन (gene expression) की इस प्रणाली का खुलासा करने में महत्वपूर्ण भूमिका निभाई है। उनका यह अनुसंधान लगभग 30 वर्षों के अंतराल के बाद पुरस्कृत हुआ है। कोशिकाओं में जेनेटिक सूचना डीएनए (DNA transcription) में संग्रहित होती है। इसे संदेशवाहक आरएनए (mRNA) के रूप में नकल किया जाता है। इस प्रक्रिया को प्रतिलेखन (transcription process) कहते हैं। यह एमआरएनए कोशिका की अन्य मशीनरी की मदद से सम्बंधित प्रोटीन (protein synthesis) का निर्माण करवाता है। इस प्रक्रिया को अनुलेखन कहते हैं। यह अत्यंत सटीकता से की जाती है ताकि डीएनए के जीन में अंकित सूचना के आधार पर प्रोटीन बने। विभिन्न किस्म की कोशिकाओं में एक-सी आनुवंशिक सूचना (genetic code) होने के बावजूद वे एकदम अलग-अलग काम करती हैं, उनमें अलग-अलग प्रोटीन का निर्माण होता है। अर्थात उनमें अलग-अलग जीन्स अभिव्यक्त (gene expression regulation) होते हैं। तभी तो मांसपेशियों की कोशिकाएं, पैंक्रियास की कोशिकाएं, आंतों की कोशिकाएं सर्वथा भिन्न-भिन्न काम कर पाती हैं। इसके अलावा एक मसला यह भी है कि हरेक कोशिका को शरीर की स्थिति और पर्यावरण के हिसाब से अपने कामकाज का तालमेल बनाना पड़ता है। और यह सब होता है जीन नियमन के द्वारा। यदि जीन नियमन गड़बड़ हो जाए तो तमाम किस्म की दिक्कतें पैदा होने लगती हैं। जैसे कैंसर (cancer research), डायबिटीज़ (diabetes research) वगैरह।
तो जीन नियमन (gene regulation research) को समझना जीव विज्ञान में एक महत्वपूर्ण अनुसंधान क्षेत्र रहा है। 1960 के दशक में यह दर्शाया गया था कि कुछ विशेष प्रोटीन्स (proteins) इस बात का नियमन करते हैं कि कौन-से एमआरएनए का निर्माण होगा। इन्हें प्रतिलेखन कारक (transcription factors) कहते हैं। इस समझ के बाद हज़ारों प्रतिलेखन कारक खोजे जा चुके हैं और यह लगभग मान लिया गया था कि जीन नियमन की गुत्थी को सुलझा लिया गया है। लेकिन…
जी हां, लेकिन। 1993 में इस वर्ष के नोबेल विजेताओं ने ऐसी अनपेक्षित खोज (Nobel Prize discovery) का प्रकाशन किया जिसने जीन-नियमन के सर्वथा नए स्तर को उजागर किया। यह अनुसंधान एक नन्हे कृमि सीनोरेब्डाइटिस एलेगेंस (Caenorhabditis elegans) की मदद से हुआ था।
बात यह थी कि 1980 के दशक में एम्ब्रोस और रुवकुन एक अन्य नोबेल विजेता रॉबर्ट होरविट्ज़ की प्रयोगशाला में पोस्टडॉक्टरल फेलो थे। वहीं उन्होंने सी. एलेगेंस का अध्ययन किया था। यह जटिल जंतुओं के अध्ययन के लिए एक अच्छा मॉडल माना जाता है कि बहुकोशिकीय जंतुओं में ऊतक कैसे विकसित होते हैं और परिपक्व होते हैं।
बात यह थी कि 1980 के दशक में एम्ब्रोस और रुवकुन एक अन्य नोबेल विजेता रॉबर्ट होरविट्ज़ की प्रयोगशाला में पोस्टडॉक्टरल फेलो थे। वहीं उन्होंने सी. एलेगेंस का अध्ययन किया था। यह जटिल जंतुओं के अध्ययन के लिए एक अच्छा मॉडल (model organism) माना जाता है कि बहुकोशिकीय जंतुओं में ऊतक कैसे विकसित होते हैं और परिपक्व होते हैं।
एम्ब्रोस और रुवकुन की रुचि विभिन्न जेनेटिक प्रोग्राम्स (genetic programs) के सक्रिय होने के समय को नियंत्रित करने वाले जीन्स में थी। इन्हीं के द्वारा यह सुनिश्चित होता है कि विभिन्न किस्म की कोशिकाएं सही समय पर विकसित हों। इस काम के लिए उन्होंने सी. एलेगेंस के उत्परिवर्तित रूपों को चुना। इन्हें lin-4 और lin-14 कहते हैं। इन दोनों में विकास के दौरान जेनेटिक प्रोग्राम्स के क्रियाशील होने के समय में गड़बड़ी देखने को मिलती थी। हमारे इस वर्ष के नोबेल विजेता इनमें उपस्थित उत्परिवर्तित जीन्स की शिनाख्त करना चाहते थे और उनकी क्रियाविधि को समझना चाहते थे।
एम्ब्रोस पहले ही यह दर्शा चुके थे कि lin-4 जीन lin-14 जीन की सक्रियता को बाधित करता है। लेकिन यह स्पष्ट नहीं था कि वह ऐसा कैसे करता है। एम्ब्रोस और रुवकुन इसी गुत्थी को सुलझाने में भिड़ गए।
एम्ब्रोस ने lin-4 उत्परिवर्तित कृमि का अध्ययन किया। उन्होंने इस जीन का क्लोन बनाया तो विचित्र परिणाम प्राप्त हुए। lin-4 जीन ने एक ऐसे आरएनए (RNA regulation) का निर्माण किया जो असाधारण रूप से छोटा था और वह किसी प्रोटीन का कोड नहीं था। एक अनुमान था कि यही लघु आरएनए दूसरे जीन lin-14 को बाधित करने के लिए ज़िम्मेदार है।
लगभग इसी समय रुवकुन ने lin-14 जीन के नियमन की खोजबीन शुरू की। उस समय जीन नियमन की जो प्रणाली ज्ञात थी उसमें यह होता था कि किसी जीन द्वारा निर्मित संदेशवाहक आरएनए (messenger RNA) किसी दूसरे जीन द्वारा एमआरएनए के निर्माण को बाधित करता है। लेकिन रुवकुन ने दर्शाया कि lin-4 जीन lin-14 जीन की क्रिया में बाधा एमआरएनए के निर्माण के दौरान नहीं पहुंचाता है बल्कि बाद के किसी चरण में पहुंचाता है। वह चरण होता है प्रोटीन के निर्माण का। शोध से यह भी पता चला कि lin-14 जीन का एक खंड lin-4 जीन की क्रिया को बाधित करने के लिए अनिवार्य होता है।
जब एम्ब्रोस और रुवकुन ने अपने परिणामों को जोड़कर देखा तो एक ज़ोरदार खोज (breakthrough discovery) सामने आई। lin-4 का एक खंड हूबहू lin-14 के निर्णायक खंड से मेल खाता है। आगे किए गए प्रयोगों से स्पष्ट हुआ कि lin-4 द्वारा बनाया गया माइक्रो-आरएनए (micro-RNA) जाकर lin-14 द्वारा बनाए गए एमआरएनए के पूरक अनुक्रम से जुड़ जाता है और उसके द्वारा प्रोटीन निर्माण को रोक देता है। तो इस प्रकार जीन नियमन का एक नया सिद्धांत उभरा – जिसे माइक्रो-आरएनए (microRNA regulation) के माध्यम से क्रियांवित किया जाता है।
1993 में सेल पत्रिका में प्रकाशित इन निष्कर्षों पर वैज्ञानिकों ने यह कहकर ध्यान नहीं दिया कि ये शायद महज़ सी. एलेगेंस कृमि के संदर्भ में हैं। लेकिन वर्ष 2000 में यह मत बदलने लगा जब रुवकुन के समूह ने एक और माइक्रो-आरएनए की खोज (microRNA discovery) का प्रकाशन किया। यह माइक्रो-आरएनए एक अन्य जीन let-7 द्वारा बनाया जाता है। ध्यान खींचने वाली बात यह थी कि let-7 जीन समूचे जंतु जगत में पाया जाता है। इस खोज के प्रकाशन के बाद तो सैकड़ों माइक्रो-आरएनए पहचाने गए और आज हम मनुष्य में माइक्रो-आरएनए (human microRNA genes) बनाने वाले एक हज़ार से ज़्यादा जीन्स जानते हैं। और यह भी ज्ञात हो चुका है कि माइक्रो-आरएनए द्वारा जीन्स का नियमन बहु-कोशिकीय जीवों में सर्वत्र पाया जाता है।
1993 में हुई इस महत्वपूर्ण खोज (important discovery) के लिए नोबेल पुरस्कार 30 से अधिक वर्षों बाद दिया गया है। इस बीच कई सारे समूहों ने यह पता लगा लिया है कि माइक्रो-आरएनए का निर्माण कैसे होता है और उन्हें उनकी पूरक शृंखला तक कैसे पहुंचाया जाता है। जब माइक्रो-आरएनए जाकर एमआरएनए के पूरक खंड से जुड़ जाता है तो या तो वह एमआरएनए प्रोटीन का संश्लेषण नहीं करवा पाता है या उसका विघटन हो जाता है। यह भी पता चल चुका है कि एक अकेला माइक्रो-आरएनए कई सारे अलग-अलग जीन्स की अभिव्यक्ति (gene expression) का नियमन कर सकता है और कुछ जीन्स की अभिव्यक्ति का नियमन एक से अधिक माइक्रो-आरएनए कर सकते हैं।
माइक्रो-आरएनए निर्माण की क्रियाविधि का इस्तेमाल कई अन्य लघु आरएनए के निर्माण में भी किया जाता है जो प्रोटीन का संश्लेषण करवा सकते हैं। जैसे ये लघु आरएनए पौधों को वायरस संक्रमण से बचाते हैं। इसी संदर्भ में आरएनए इंटरफेरेंस (RNA interference) की प्रक्रिया की खोज के लिए 2006 में नोबेल सम्मान मिल चुका है।
माइक्रो-आरएनए के शरीर क्रियात्मक असर काफी व्यापक हैं। ज़ाहिर है, जटिलतम होते गए सजीवों का विकास इन्हीं के दम पर हुआ है। काफी शोध की बदौलत हम जानते हैं कि माइक्रो-आरएनए की अनुपस्थिति में कोशिकाएं और ऊतक सामान्य रूप से विकसित नहीं हो पाते। यदि माइक्रो-आरएनए नियमन गड़बड़ा जाए तो कैंसर जैसी समस्याएं (cancer-related issues) पैदा हो सकती हैं। मनुष्यों में माइक्रो-आरएनए के उत्परिवर्तित जीन्स पाए गए हैं जो कई दिक्कतों को जन्म देते हैं।
कुल मिलाकर कोशिकाओं में जेनेटिक सूचना के नियमन (genetic information regulation) को लेकर एक बुनियादी जिज्ञासा से प्रेरित एम्ब्रोस और रुवकुन ने एक कृमि पर शोध की मदद से ऐसी असाधारण खोज (extraordinary discovery) की जिसने जीन नियमन का एक नया आयाम उजागर किया जो बहु-कोशिकीय जीवों के लिए अनिवार्य है। (स्रोत फीचर्स)
नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://swarajya.gumlet.io/swarajya%2F2024-10-07%2F2oq6x4vc%2Fviktor.jpg?w=1200&ar=40%3A21&auto=format%2Ccompress&ogImage=true&mode=crop&enlarge=true&overlay=false&overlay_position=bottom&overlay_width=100