अंतत: अमेरिका में एस्बेस्टस पर प्रतिबंध लगाया गया

मेरिकी पर्यावरण संरक्षण एजेंसी (EPA) ने कई वर्षों की जद्दोज़हद के बाद मार्च 2024 से एस्बेस्टस के उपयोग पर पूर्ण प्रतिबंध की घोषणा की है। यह घोषणा एक आश्चर्य के रूप में सामने आई। सब मानते आए थे कि एस्बेस्टस पर प्रतिबंध तो पहले से ही लगा हुआ था, और 1970 के दशक से ही इसे अमरीकी स्कूलों और अस्पतालों से हटा दिया गया था।

गौरतलब है कि एस्बेस्टस प्राकृतिक रूप से पाया जाने वाला खनिज है जो गर्मी और आग की लपटों के प्रति प्रतिरोधी है, लेकिन यह अत्यधिक ज़हरीला है और कैंसर का कारण बनता है। 1898 में, ब्रिटिश फैक्ट्री इंस्पेक्टर लूसी डीन ने एस्बेस्टस निर्माण को श्रमिकों के स्वास्थ्य के लिए खतरनाक बताया था। 1927 तक, ‘एस्बेस्टोसिस’ शब्द का इस्तेमाल एस्बेस्टस श्रमिकों में आम तौर पर होने वाली फेफड़ों की एक गंभीर बीमारी के लिए किया जाने लगा। 1960 के दशक में कई अध्ययनों से यह स्पष्ट हुआ कि एस्बेस्टस के संपर्क में आने से न केवल एस्बेस्टोसिस होता है, बल्कि फेफड़ों का कैंसर, मेसोथेलियोमा और अन्य प्रकार के कैंसर भी होते हैं। और तो और, शोध से यह भी पता चला कि एस्बेस्टस का कोई सुरक्षित स्तर नहीं है।

इन निष्कर्षों के बावजूद, सरकारों को कार्रवाई करने में कई साल लग गए। 1970 के दशक में, कई देशों ने एस्बेस्टस पर प्रतिबंध लगाना शुरू कर दिया था। 2020 तक, कम से कम 67 देशों ने प्रतिबंध लागू किए थे। लेकिन अमेरिका ने अब तक केवल आंशिक प्रतिबंध ही लगाए थे। भारत में 1993 में एस्बेस्टस खनन पर प्रतिबंध लगाने के बावजूद, इसके उत्पादन, आयात या व्यापार में इसके उपयोग को प्रतिबंधित करने के लिए कोई कानून नहीं है। वर्तमान में भारत एस्बेस्टस निर्मित उत्पादों का निर्यात भी करता है।

अमेरिका में देरी के लिए कई कारकों को ज़िम्मेदार ठहराया जा सकता है। इसमें 1980 के दशक से उद्योग जगत द्वारा प्रतिबंध के विरोध और यूएस में व्याप्त नियमन विरोधी आम रवैये ने महत्वपूर्ण भूमिका निभाई। 1989 में, EPA ने विषाक्त पदार्थ नियंत्रण अधिनियम (TOSCA) के तहत अधिकांश एस्बेस्टस उत्पादों पर प्रतिबंध लगाने की कोशिश की, लेकिन इस नियम को करोज़न प्रूफ फिटिंग्स नामक एक कंपनी और अन्य व्यापार संघों द्वारा अदालत में चुनौती दी गई। हालांकि, अदालत व्यापार संघों द्वारा दिए गए कम लागत के झूठे दावों से सहमत नहीं थी, लेकिन EPA द्वारा अपनाए गए तरीके के साथ भी प्रक्रियात्मक मुद्दे पाए गए। इसके नतीजे में EPA ने एक नया और व्यापक प्रतिबंध नहीं लगाया। इसकी बजाय, उसने छोटे-छोटे मामलों पर ध्यान दिया, जिसने स्कूलों को एस्बेस्टस का प्रबंधन करने में मदद की, लेकिन इसे पूरी तरह से खत्म नहीं किया।

इसके अलावा, तंबाकू उद्योग के समान एस्बेस्टस उद्योग ने एस्बेस्टस के नुकसान के प्रमाणों को शंकास्पद साबित करने का प्रयास किया। शोधकर्ताओं को बदनाम किया गया और कहा गया कि केवल कुछ प्रकार के एस्बेस्टस ही खतरनाक हैं। अलबत्ता, 2016 के बाद संसद ने TOSCA में संशोधन किया, जिससे व्यापक प्रतिबंध लगाने का रास्ता खुल गया। नया एस्बेस्टस प्रतिबंध, संशोधित कानून के तहत जारी पहला नियम है।

गौरतलब है कि एस्बेस्टस का प्रभाव काफी विनाशकारी रहा है। वाशिंगटन विश्वविद्यालय के स्वास्थ्य मापन और मूल्यांकन संस्थान का अनुमान है कि 2019 में एस्बेस्टस के कारण करीब 40,764 श्रमिकों की मृत्यु हुई। यू.एस. रोग नियंत्रण एवं रोकथाम केंद्र ने 1999 और 2015 के बीच 45,221 मेसोथेलियोमा से हुई मौतों को दर्ज किया। जबकि 20वीं सदी में, सिर्फ यू.एस. में एस्बेस्टस के कारण लगभग 1.7 करोड़ व्यावसायिक मौतें और 20 लाख गैर-व्यावसायिक मौतें हुई हैं।

हालिया प्रतिबंध एक महत्वपूर्ण कदम है। एस्बेस्टस पर प्रतिबंध के लिए चला लंबा संघर्ष दर्शाता है कि वैज्ञानिक निष्कर्षों को कुशलतापूर्वक और प्रभावी ढंग से नीति का रूप देना कितना महत्वपूर्ण और कठिन है। बहरहाल, यह सुनिश्चित करना ज़रूरी है कि कोई भी हानिकारक पदार्थ प्रतिबंधित होने से पहले सदियों तक इस्तेमाल न होता रहे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://media.cnn.com/api/v1/images/stellar/prod/gettyimages-1267659690.jpg?c=original

विचित्र बैक्टीरिया नए जीन्स बनाते हैं

म तौर पर जेनेटिक सूचना एक ही दिशा में बहती है – डीएनए नामक अणु में जीन्स होते हैं, ये जीन्स एक सांचे की तरह काम करते हैं और एक अन्य अणु आरएनए का निर्माण करते हैं और आरएनए प्रोटीन बनवाता है। डीएनए से आरएनए बनने की प्रक्रिया को ट्रांसक्रिप्शन कहते हैं और यह जिन एंज़ाइमों के दम पर चलती है उन्हें ट्रांसक्रिप्टेस कहते हैं। यह सीधी-सरल कथा 1970 में पेचीदा हो गई। उस साल वैज्ञानिकों ने खोजा कि कुछ वायरसों में रिवर्स ट्रांसक्रिप्टेस नामक एंज़ाइम होता है। और यह एंज़ाइम उपरोक्त एकदिशीय प्रक्रिया को उल्टा चला सकता है यानी आरएनए से डीएनए बनवा सकता है।

अब नई खोज से इसमें एक और पेंच आ गया है। रिवर्स ट्रांसक्रिप्टेस का बैक्टीरिया संस्करण खोजा गया है। यह आरएनए अणु का इस्तेमाल सांचे के रूप में करके डीएनए में सर्वथा नए जीन्स जोड़ सकता है। ट्रांसक्रिप्शन के ज़रिए ये जीन फिर से आएनए में बदल सकते हैं और प्रोटीन का निर्माण करवा सकते हैं। ऐसे प्रोटीन का निर्माण तब किया जाता है जब कोई वायरस बैक्टीरिया को संक्रमित कर दे। यहां बताना मुनासिब है कि वायरस का रिवर्स ट्रांसक्रिप्टेस नए जीन्स का निर्माण नहीं करता; वह तो मात्र आरएनए में लिखी सूचना को डीएनए में बदलता है।

एक मायने में यह बैक्टीरिया के सुरक्षा तंत्र का हिस्सा है। वायरस संक्रमण के विरुद्ध बैक्टीरिया की एक और सुरक्षा व्यवस्था होती है जो आजकल क्रिस्पर नामक जीन संपादन तकनीक के रूप में मशहूर है। इस तकनीक से बैक्टीरिया वायरस के डीएनए/आरएनए के कुछ अंशों को अपने डीएनए में जोड़ लेता है और फिर ये उस वायरस की पहचान में काम आते हैं।

जिस नई व्यवस्था की खोज हुई है वह थोड़ी ज़्यादा रहस्यमय है। इस तंत्र की कार्यविधि का खुलासा कोलंबिया विश्वविद्यालय के स्टीफन टैंग और सैमुअल स्टर्नबर्ग ने किया है। यह देखा गया था कि कतिपय बैक्टीरिया के डीएनए में एक जीन होता है जो रिवर्स ट्रांसक्रिप्टेस का कोड होता है और आरएनए का छोटा-सा खंड होता है जिसका कोई प्रकट काम नहीं होता यानी यह किसी प्रोटीन का निर्माण नहीं करवाता। टैंग और स्टर्नबर्ग ने क्लेबसिएला न्यूमोनिए (Klebsiella pneumoniae) में रिवर्स ट्रांसक्रिप्टेस द्वारा बनाए गए डीएनए अणु की तलाश की। पता चला कि यह डीएनए की अति दीर्घ शृंखला थी जिसमें एक सरीखे खंड बार-बार दोहराए गए थे और प्रत्येक खंड का अनुक्रम उस रहस्यमय आरएनए के खंडों से मेल खाता था।

ऐसा कैसे होता है? शोधकर्ताओं का मत है कि लंबे-लंबे आरएनए सूत्र मुड़कर हेयरपिन का आकार ग्रहण कर सकते हैं। ऐसा होने पर एक ही शृंखला के दो दूर-दूर के खंड पास-पास आ जाते हैं। शोधकर्ताओं ने पाया कि क्लेबसिएला न्यूमोनिए का ट्रांसक्रिप्टेस इस आरएनए शृंखला को डीएनए में तबदील करते समय बार-बार उसी स्थान की नकल बनाता है और इस तरह दोहराव वाली डीएनए शृंखला बन जाती है।

इस तरह बनी दोहराव वाली शृंखला प्रोटीन-कोडिंग शृंखला बन जाती है जिसमें प्रोटीन निर्माण के समापन को दर्शाने वाला कोई संकेत नहीं होता – इसलिए इसे ओपन रीडिंग फ्रेम कहते हैं और शोधकर्ताओं ने इस शृंखला को नाम दिया है नेवर एंडिंग ओपन रीडिंग फ्रेम (neo – नीयो)। शोधकर्ताओं ने यह भी पाया कि वायरस का संक्रमण नीयो प्रोटीन के निर्माण को प्रेरित करता है। इस प्रोटीन का असर यह होता है कि उस प्रोटीन से युक्त कोशिका विभाजन करना बंद कर देती है। इससे तो लगता है कि यह उस कोशिका के लिए एक नया प्रोटीन है। अर्थात यहां रिवर्स ट्रांसक्रिप्टेस की मदद से एक सर्वथा नया जीन बैक्टीरिया के जीनोम में जुड़ रहा है। यह खोज जीव विज्ञान में एक नई कार्य प्रणाली की उपस्थिति का संकेत है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.z7w7tq5/abs/klebsiella_pneumoniae_bacteria_13743456084_resize.jpg

जैव विकास का चक्र

हाल ही में साइन्स एडवांसेस में प्रकाशित एक अध्ययन में एक कीट की विभिन्न आबादियों का 10 वर्षों तक अध्ययन करके इस बात पर प्रकाश डाला गया है कि कैसे जैव विकास के चक्र का नियमन होता है।

स्टिक इंसेक्ट नामक यह कीट (Timema cristinae) कैलिफोर्निया के जंगलों में बहुतायत में पाया जाता है। वहां यह तीन रूपों में मिलता है और तीनों रूप अपने परिवेश में ओझल होने में सक्षम होते हैं। एक रूप सादा हरा होता है और लिलैक की पत्तियों के बीच आसानी से छिप जाता है। इसी के एक रूप पर सफेद धारियां होती हैं और यह वहां के जंगलों में पाई जाने वाली सदाबहार चैमाइज़ झाड़ियों में छिपता है। तीसरा रूप गहरे रंग का होता है और दोनों वनस्पतियों पर पाया जाता है लेकिन इसका गहरा रंग जंगल के फर्श से ज़्यादा मेल खाता है।

अध्ययन के दौरान सबसे पहली बात तो यह स्पष्ट हुई कि जिन 10 आबादियों का अध्ययन किया गया था उनमें हरे रंग वाला कीट लिलैक बहुल इलाकों में ज़्यादा पाया जाता है जबकि धारीदार रूप चैमाइज़ इलाकों में। गहरे रंग वाला कीट कम मिलता है और दोनों ही तरह के पेड़ों पर मिलता है। यह तो कोई अचरज की बात नहीं थी लेकिन फ्रांस की राष्ट्रीय शोध संस्था सीएनआरएस के पैट्रिक नोसिल और उनके साथियों द्वारा किए गए इस अध्ययन का अगला अवलोकन चौंकाने वाला था।

देखा यह गया कि सारी 10 आबादियों में उपरोक्त अनुपात साल-दर-साल एक चक्र के रूप में बदलता है जिसका पूर्वानुमान किया जा सकता है। 10 साल के इस अध्ययन में देखा गया कि जो रूप एक वर्ष प्रचुरता में पाया जाता है, वह अगले वर्ष कम हो जाता है – जैसे, यदि किसी वर्ष धारीदार कीट अधिक संख्या में हैं तो अगले वर्ष सादे हरे रंग वाले कीट का बोलबाला होगा। गहरे रंग वाले कीटों की संख्या अपेक्षाकृत स्थिर बनी रही।

नोसिल की टीम ने कीट-रूपों को यहां-वहां बसाकर उनके अनुपात को बदलकर भी देखा। इस प्रयोग से उनका निष्कर्ष है कि किसी कीट-रूप के लिए बिरला होना फायदेमंद होता है। शायद इसलिए कि पक्षी अपने भोजन में उन कीटों को प्राथमिकता देते हैं जो प्रचुरता से उपलब्ध हों, जिसके चलते अगली पीढ़ी में उनकी संख्या कम हो जाती है। तब पक्षी अपना शिकार बदल देते हैं और चक्र चलता रहता है। जीव वैज्ञानिक इसे प्रचुरता-आधारित नकारात्मक चयन कहते हैं। यह कई प्रजातियों में देखा गया है।

कीटों के जेनेटिक विश्लेषण में पाया गया कि उनके पैटर्न में परिवर्तन उनके जीनोम में व्यापक उलट-पलट के ज़रिए होता है। दरअसल पर्यावरण के असर से ऐसे फेरबदल पहले भी रिपोर्ट किए गए हैं। जैसे स्टिकलबैक नामक मछलियां जब खारे पानी से मीठे पानी की ओर जाती हैं, तो उन सबमें एक से जेनेटिक परिवर्तनों के ज़रिए एक-से शारीरिक व कार्यिकीय परिवर्तन होते हैं। यह भी देखा गया है कि कतिपय एंटीबायोटिक के संपर्क में आने पर बैक्टीरिया जीवित रहने के लिए एक-से जेनेटिक परिवर्तनों का सहारा लेते हैं। खास बात यह है कि वर्तमान अध्ययन में इसे प्राकृतिक परिस्थितियों में देखा गया है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/commons/6/62/Timema_cristinae.jpg

छलांग लगाती जोंक

जोंक अपने चिपकूपने के लिए जानी जाती हैं। लेकिन शोधकर्ताओं द्वारा हाल ही में खोजी गई एक जोंक प्रजाति की खासियत है हवा में छलांग लगाना।

मेडागास्कर में खोजी गई यह जोंक (Chtonobdella fallax) यहां काफी पाई जाती है। शोधकर्ता बायोट्रॉपिका में इसकी छलांग के बारे में बताते हैं कि यह किसी पत्ती या झाड़ी पर से ज़मीन पर छलांग लगाने के लिए पहले तो किसी सांप की तरह पीछे की ओर सरकती है, और फिर सीधे तनकर अपने शरीर को आगे की ओर फेंकते हुए ज़मीन पर कूद जाती है। थोड़ी ही देर की रिकॉर्डिंग में शोधकर्ताओं ने इसे तीन बार यह करतब करते देखा, जिसके आधार पर उनका कहना है कि जोंक की यह प्रजाति संभवत: अक्सर छलांग लगाती होगी।https://www.amnh.org/explore/news-blogs/research-posts/leaping-leeches इस लिंक पर जाकर आप इसकी दिलचस्प कलाबाज़ी देख सकते हैं।

यह बहस सालों से चली आ रही थी कि ज़मीन पर रहने वाली जोंक अपने मेज़बानों पर कूद सकती हैं या नहीं। जोंक के इस व्यवहार के लिखित किस्से तो लगभग 14वीं सदी से मिलते हैं। लेकिन इन किस्सों की सच्चाई का कोई ठोस प्रमाण नहीं था। अब वैज्ञानिकों के पास छलांग लगाती जोंक के वीडियो हैं।

इनके बारे में तो अभी तो पता ही चला है। ये ऐसा व्यवहार क्यों प्रदर्शित करती हैं, क्या अपने मेज़बानों पर कूदने के लिए छलांग लगाती हैं या कोई और कारण है, उनका भोजन कौन से जानवर हैं? इन सभी सवालों के जवाब अभी अनुत्तरित हैं और शोधकर्ता इनके जवाब खोजने के लिए आगे अध्ययन कर रहे हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.science.org/do/10.1126/science.z87l4fd/abs/_20240620_on_jumping-leech_v1.jpg

लकड़ी का उपग्रह!

1957 में पहले कृत्रिम उपग्रह के प्रक्षेपण के बाद पृथ्वी की कक्षा, खासकर लो अर्थ ऑर्बिट (LEO), में उपग्रहों की भरमार हो गई है; अब तक तकरीबन 14,450 उपग्रह पृथ्वी की विभिन्न कक्षाओं में छोड़े जा चुके हैं।

लेकिन ये सभी उपग्रह हमेशा सक्रिय या ‘जीवित’ नहीं रहते। अपनी तयशुदा उम्र या काम के बाद वे ‘मर’ जाते हैं। बेकार पड़ चुके उपग्रहों को वहां से हटाना होता है वरना वे अंतरिक्ष में बढ़ रही उपग्रहों की भीड़ और मलबे को और बढ़ाएंगे। इसलिए पृथ्वी की भूस्थैतिक कक्षा में स्थापित उपग्रहों को धक्का देकर अधिक ऊंचाई की ‘कब्रस्तान कक्षा’ में भेज दिया जाता है, हालांकि इस तरह अंतरिक्ष में मलबा तो बरकरार ही रहता है। वहीं पृथ्वी की करीबी कक्षा में स्थापित उपग्रहों को धीमा किया जाता है। रफ्तार धीमी पड़ने पर ये पृथ्वी के वायुमण्डल में प्रवेश करते हैं, और जलकर नष्ट हो जाते हैं। लेकिन जलकर नष्ट होने से इनमें से एल्यूमीनियम ऑक्साइड और अन्य धातु कण वायुमण्डल में फैल जाते हैं, जो खतरा साबित हो सकते हैं।

जियोफिज़िकल रिसर्च लेटर्स में प्रकाशित एक अध्ययन बताता है कि 250 किलोग्राम का एक उपग्रह वायुमण्डल में जलने पर करीब 30 किलोग्राम एल्यूमीनियम ऑक्साइड छोड़ता है। पाया गया है कि वर्ष 2022 में उपग्रहों को इस तरह ठिकाने लगाने के चलते वायुमण्डल में एल्यूमीनियम ऑक्साइड की मात्रा में 29.5 प्रतिशत (17 मीट्रिक टन) की वृद्धि हुई है। भविष्य में उपग्रह प्रक्षेपण की योजना के आधार पर अनुमान है कि वायुमण्डल में प्रति वर्ष करीब 360 मीट्रिक टन एल्यूमीनियम ऑक्साइड की वृद्धि होगी। नतीजतन ओज़ोन परत को क्षति पहुंचेगी।

इसी समस्या को ध्यान में रखते हुए क्योटो युनिवर्सिटी के शोधकर्ताओं ने लकड़ी का उपग्रह, लिग्नोसैट (LignoSat), बनाया है। शोधकर्ताओं का कहना है कि लिग्नोसैट पारंपरिक उपग्रहों में इस्तेमाल की जाने वाली धातुओं की तुलना में अधिक टिकाऊ और कम प्रदूषणकारी है। शोधकर्ताओं का कहना है कि अपना काम समाप्त कर जब यह पृथ्वी पर वापस आएगा तो इसकी लकड़ी पूरी तरह से जल जाएगी और केवल जलवाष्प और कार्बन डाईऑक्साइड वायुमण्डल में मुक्त होगी। लकड़ी से उपग्रह बनाने का जो एक और फायदा दिखाई देता है वह है कि यह अंतरिक्ष के पर्यावरण को झेल सकता है और रेडियो तरंगों को अवरुद्ध नहीं करता है, जिसके चलते एंटीना को इसके अंदर लगाया जा सकता है।

घनाकार लिग्नोसैट की लंबाई-चौड़ाई-ऊंचाई लगभग 10-10 सेंटीमीटर है। इसका ढांचा मैग्नोलिया लकड़ी का बनाया गया है। इस पर सौर पैनल, सर्किट बोर्ड और सेंसर लगाए गए हैं जिनकी मदद से लकड़ी पर पड़ रहे दबाव, तापमान, भू-चुंबकीय बलों और विकिरण को मापा जाएगा। साथ ही साथ इससे रेडियो सिग्नल भेजने और प्राप्त करने की क्षमता का परीक्षण भी किया जाएगा। इसकी तख्तियों को जोड़ने के लिए गोंद या स्क्रू की बजाय लकड़ी जोड़ने की पारंपरिक जापानी विधि से एल्यूमीनियम के फ्रेम में कसा गया है।

लिग्नोसैट को इस साल सितम्बर में प्रक्षेपित किया जाएगा। उपग्रह की लकड़ी की तख्तियां वास्तविक परिस्थितियों में कितना कारगर रहती हैं यह तो कक्षा में पहुंचकर काम शुरू करने के बाद ही अच्छे से स्पष्ट होगा। यदि सफल रहा तो भावी अंतरिक्ष मिशनों में लकड़ी के उपयोग की संभावना बढ़ सकती है।

हालांकि लिग्नोसैट जलने पर मात्र जलवाष्प और कार्बन डाईऑक्साइड ही छोड़ता है लेकिन कार्बन डाईऑक्साइड की समस्याओं से भी हम भलीभांति अवगत हैं। इसलिए बड़े पैमाने पर लकड़ी-उपग्रहों के उपयोग के पर्यावरणीय असर का आकलन भी ज़रूरी है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://images.nature.com/lw1200/magazine-assets/d41586-024-01456-z/d41586-024-01456-z_27173294.jpg

प्राचीन चूल्हों से काल निर्धारण

स्पेन के एक पुरातात्विक स्थल एल साल्ट पर पुरातत्वविदों को निएंडरथल मानव के लगभग 52,000 साल पुराने साक्ष्य मिले थे; पत्थर के औज़ार, जानवरों की हड्डियां, चूल्हे और मानव मल का (सबसे प्राचीन ज्ञात) जीवाश्म। ये साक्ष्य मिट्टी की एक ही परत में मिले थे। लिहाज़ा, वैज्ञानिकों का मानना था कि निएंडरथल (होमो निएंडरथलेंसिस) मानव लगभग एक ही समय पर यहां आए थे, और अपने पीछे ये निशान छोड़ गए थे।

लेकिन साक्ष्यों या घटनाओं को इस तरह मोटे तौर पर एक ही समय का कहने से वास्तविक इतिहास दबा ही रहता है। दूसरा, प्राचीन समय में संभवत: एक लंबी अवधि में या समय के साथ धीरे-धीरे घटित हुई घटना, या विकसित हुई तकनीक एक चुटकी में हुए चमत्कार की तरह लगने लगती है।

इन्हीं कारणों के चलते बर्गोस विश्वविद्यालय की पुरातत्वविद एंजेला हेरेजोन-लैगुनिला ने इस स्थल पर मिले चूल्हों का सटीक कालनिर्धारण करने का सोचा। इसके लिए उन्होंने चूल्हों में बचे चुंबकीय खनिजों (अवशेषों) का विश्लेषण किया। दरअसल, चूल्हों के बुझने पर राख या अवशेष में मौजूद चुंबकीय खनिजों में पृथ्वी के तत्कालीन चुंबकीय क्षेत्र की दिशा दर्ज हो जाती है और बनी रहती है जब तक कि उस पदार्थ को फिर से एक निश्चित तापमान से ऊपर तपाया न जाए।

विश्लेषण के लिए शोधकर्ताओं ने पृथ्वी के चुंबकीय क्षेत्र में हुए हालिया बदलावों के आधार पर लगभग 52,000 साल  पहले पृथ्वी के चुंबकीय क्षेत्र में हुए सूक्ष्म परिवर्तनों का मॉडल तैयार किया। और इस जानकारी की मदद से यह अनुमान लगाया कि कौन से चूल्हे अंतिम बार कब उपयोग किए गए थे।

नेचर पत्रिका में प्रकाशित नतीजे बताते हैं कि इस स्थल पर सबसे पहली और सबसे आखिरी बार उपयोग किए गए चूल्हों के बीच कम से कम 200 साल का अंतर था। इसमें भी अलग-अलग चूल्हों के इस्तेमाल होने के बीच दशकों लंबा फासला था। इससे पता चलता है कि निएंडरथल मानव की कई पीढ़ियां लंबे समय तक इस जगह पर आती रहीं थीं।

ये नतीजे वैज्ञानिकों को पत्थर के औज़ारों सहित अन्य मानव साक्ष्यों को नए सिरे से समझने के लिए प्रेरित कर सकते हैं। काल निर्धारण की इस तकनीक के व्यापक इस्तेमाल से प्राचीन मनुष्यों के रहने, एक स्थान से दूसरे स्थान पर जाने और समूहों में संगठित होने एवं औज़ारों के इस्तेमाल बारे में नए सिरे से, बारीकी से जानकारी मिल सकती है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://images.nature.com/lw1200/magazine-assets/d41586-024-01688-z/d41586-024-01688-z_27177292.jpg

जलवायु संकट पर कार्रवाई की तत्काल आवश्यकता

ई वर्षों से वैज्ञानिक वैश्विक तापमान में वृद्धि और पूर्व-औद्योगिक स्तर से 1.5 डिग्री सेल्सियस की ऊपरी सीमा को लेकर निरंतर चेतावनी देते आए हैं। हालिया स्थिति देखें तो पिछले 11 महीनों (जुलाई 2023 से मई 2024) का औसत तापमान निरंतर इस निर्धारित सीमा से ऊपर रहा है। युरोपीय संघ के कॉपरनिकस क्लाइमेट चेंज सर्विस का दावा है कि पिछले महीने (मई 2024) का तापमान पूर्व-औद्योगिक औसत से 1.52 डिग्री अधिक था।

विश्व मौसम संगठन के अनुसार 80 प्रतिशत संभावना है कि अगले पांच वर्षों में से कोई एक वर्ष ऐसा होगा जब औसत तापमान 1.5 डिग्री सेल्सियस की सीमा को पार कर जाएगा जबकि 2015 में ऐसा होने की संभावना लगभग शून्य थी।

हालांकि, तापमान में इन अस्थायी उछालों का मतलब यह नहीं है कि हम हमेशा के लिए 1.5 डिग्री सेल्सियस की सीमा को पार कर गए हैं। पेरिस जलवायु समझौते का उद्देश्य दीर्घकालिक औसत तापमान वृद्धि को 1.5 डिग्री सेल्सियस से नीचे रखना है। इसमें यह स्पष्ट नहीं है कि वृद्धि के आकलन में समय का पैमाना क्या होगा।

संयुक्त राष्ट्र महासचिव एंटोनियो गुटेरेस ने कहा है कि यदि हम जमकर काम करें तो 1.5 डिग्री सेल्सियस की सीमा अभी भी हासिल की जा सकती है; ज़रूरत है ग्रीनहाउस गैसों के उत्सर्जन को कम करने के लिए कड़ी मेहनत की।

1.5 डिग्री सेल्सियस के लक्ष्य को पूरा करने का सबसे उचित तरीका उत्सर्जन में भारी कटौती करना है। इसके लिए विशेषज्ञों का मत है कि वैश्विक उत्सर्जन 2025 तक चरम पर पहुंचकर कम होने लगना चाहिsए। इसे 2030 तक 42 प्रतिशत कम हो जाना चाहिए और 2050 तक नेट-ज़ीरो। फिलहाल तो हम इस मंज़िल से बहुत दूर हैं, क्योंकि वैश्विक स्तर पर हम हर साल लगभग 40 अरब मीट्रिक टन कार्बन डाईऑक्साइड उत्सर्जित कर रहे हैं।

इस मामले में जलवायु विशेषज्ञ जिम स्की का मानना है कि कभी-कभार 1.5 डिग्री सेल्सियस से अधिक तापमान बढ़ना लगभग अपरिहार्य है। हालांकि, उचित प्रयासों से तापमान को इस सीमा से नीचे लाना संभव है। ऐसा न करने पर समुद्र का जलस्तर बढ़ने और कई प्रजातियों के विलुप्त होने जैसी अपरिवर्तनीय घटनाएं घट सकती हैं। इसके अलावा, 1.5 डिग्री सेल्सियस से थोड़ी भी वृद्धि छोटे द्वीप देशों और तटीय समुदायों के लिए बहुत गंभीर परिवर्तन ला सकती है। इसलिए, इस सीमा में किसी भी तरह की वृद्धि और उसकी अवधि को कम करना अत्यंत महत्वपूर्ण है।

बहरहाल, चुनौती तो वास्तव में बहुत बड़ी है, लेकिन अभी भी हमारे पास मौका है। भविष्य की पीढ़ियों के लिए ग्रह को तभी सुरक्षित किया जा सकता है जब वैश्विक उत्सर्जन में तत्काल और पर्याप्त कमी की जाए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.scientificamerican.com/dam/m/2772db8f3e8a62c8/original/GettyImages-1233960564.jpg?w=1200