Customise Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorised as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyse the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customised advertisements based on the pages you visited previously and to analyse the effectiveness of the ad campaigns.

No cookies to display.

आर्टिफिशियल इंटेलिजेंस (एआई) यानी कृत्रिम बुद्धि – 2 – हरजिंदर सिंह ‘लाल्टू’

पिछले लेख में हमने रोबोट और कंप्यूटर का ज़िक्र किया था। सत्तर साल पहले अपने शुरुआती दौर में रोबोट-विज्ञान या रोबोटिक्स कंप्यूटरों पर निर्भर नहीं होता था, क्योंकि तब आज जैसे तेज़ रफ्तार से चलने और बड़ी तादाद में आंकड़े संजोने वाले कंप्यूटर होते नहीं थे। जैसे एक क्रेन बिजली से काम करती है, ऐसे ही रोबोट मशीनें बनाई जाती थीं, जो सामान उठाने, उतारने या खतरनाक जगहों में (जैसे बारूदी सुरंगों से निपटना या रेडियो-सक्रिय सामग्री को समेटना) इंसान की मदद के काम आएं। यानी तब रोबोट महज़ मशीनें थीं जो इंसान जैसी दिखती थीं।

कंप्यूटर टेक्नॉलॉजी में दिन दूनी रात चौगुनी रफ्तार से तरक्की हुई। 1965 में इलेक्ट्रॉनिक्स इंजीनियर और कारोबारी गॉर्डन मूर ने कहा था कि हर साल माइक्रोचिप में ट्रांज़िस्टर की तादाद दुगनी हो जाएगी और फिर 1975 में उन्होंने अनुमान लगाया था कि ऐसा हर दो साल में होगा। आंकड़े या सूचना संजोने और तेज़ रफ्तार से सवाल हल करने या सूचना की प्रोसेसिंग दोनों में इसी रफ्तार से बढ़त हुई है। नतीजतन हर विधा की तरह रोबोटिक्स में भी कंप्यूटरों का इस्तेमाल बढ़ गया।

अस्सी के दशक में अमोनिया और मीथेन जैसे छोटे अणुओं से अमीनो अम्ल जैसे बड़े अणुओं के बनने से लेकर आखिरकार जीवन के मुमकिन हो पाने की समझ आधी सदी पहले से बनी थी। उसी आधार पर मानव-निर्मित जीवन या आर्टीफिशियल लाइफ पर बहुत काम हुआ। कंप्यूटर पर खेलने वाले प्रोग्राम लिखे गए – जैसे एक खेल का नाम ‘गेम ऑफ लाइफ’ था, जिसमें टुकड़े आपस में टकराकर छोटे-बड़े होते थे और आखिर में बड़े आकार के बन जाते थे। बाद में यह भी एआई का हिस्सा बन गया।

मनोविज्ञान और एआई, इन दोनों विषयों के बुनियादी सवाल एक जैसे हैं। आज मनोविज्ञान की एक शाखा (जिसे अब अपने-आप में अलग विषय जाना जाता है) संज्ञान का विज्ञान या कॉग्निटिव साइंस को एआई की शाखा माना जाता है। इसमें यह समझने की कोशिश होती है कि हम किसी चीज़ को समझते कैसे हैं यानी जो भी जैव-रासायनिक प्रक्रियाएं हमारे जिस्म में होती हैं, वे संज्ञान तक कैसे बढ़ जाती हैं। क्या दिमाग भी एक कंप्यूटर है? ऐसे खयालों ने एआई वैज्ञानिकों में यह मुगालता पैदा कर दिया कि बड़ी जल्दी ही समूचा मनोविज्ञान कंप्यूटर प्रोग्रामों की तरह बूझ लिया जाएगा। ज़ाहिर है, ये सवाल दार्शनिक हैं और सदियों से दुनिया भर में चिंतकों ने इन पर माथा खपाया है।

दर्शन शास्त्र में हमेशा से ही यह बहस रही है कि जिस्म और मन का क्या रिश्ता है। क्या मन और जिस्म अलग-अलग हैं या जिस्म से अलग मन का कोई वजूद नहीं है? सत्रहवीं सदी में युरोप में आधुनिक विज्ञान की शुरुआत में रेने देकार्ते ने कहा था कि जिस्म और मानस अलग चीज़ें हैं। आज ऐसा नहीं माना जाता, हालांकि इस पर कोई आखिरी समझ अभी भी नहीं बन पाई है।

कई एआई वैज्ञानिक मानते हैं कि दिमाग और मन का रिश्ता कंप्यूटर और प्रोग्राम की तरह है। यानी कंप्यूटर लोहे-लंगड़ से बनी मशीन है, पर प्रोग्राम के बिना वह कुछ भी नहीं है; इसी तरह जिस्म में दिमाग जैव-रासायनिक घटकों से बना हार्डवेयर है, पर कुछ ऐसा है जो मन या सॉफ्टवेयर है, जो उसका वजूद मानीखेज़ बनाता है। जैसे प्रोग्राम महज लिखा जाता है, उसके भौतिक वजूद पर बात बेमानी है, इसी तरह मन के बारे में कुछ कह पाना मुश्किल है।

आखिर असली और गढ़ी गई (गैरकुदरती) बुद्धि या समझ किस मायने में भिन्न हैं? हर जानवर एक हद तक सोचता-समझता है और जीवन के धागे बुनता है, पर क्या यही बुद्धि है? इस सवाल का कोई साफ जवाब नहीं है। एआई में बुद्धि को जीवन में कुछ भी कर पाने के लिए कंप्यूटर की तरह गणनाओं या सूचनाओं का लेन-देन माना जाता है। इसमें दीगर जानवरों की तुलना में इंसान ज़्यादा काबिल हैं। मसलन भाषा जैसी काबिलियत दूसरे जानवरों में कम विकसित है। एआई के शुरुआती दौर में सैद्धांतिक पक्ष को साइबरनेटिक्स कहा जाता था, जिसमें यह माना गया कि इंसान, दीगर जानवर, और मशीनें, इन सब को चलाने वाले कायदे एक जैसे हैं, हालांकि वे अलग-अलग चीज़ों से बने ढांचे हैं। इसी आधार पर ऐसे रोबोट बनाए गए जो कुछ हद तक अपने आप काम करते थे; जैसे पहियों पर चलने वाले रोशनी के पास या दूर जाने वाले कछुए जैसे रोबोट, जो बैटरी का चार्ज खत्म होने पर खुद से रीचार्ज के लिए बिजली के सॉकेट तक आ जाते हैं। रोचक बात यह है कि ऐसे रोबोट के बारे में पहले से अनुमान लगाना मुश्किल है कि वे कब कहां जाएंगे या कब रीचार्ज करेंगे यानी ऐसी जटिल बातें वो अपने आप तय कर रहे हैं। पर यह काबिलियत वह बुद्धि नहीं है, जिसे इंटेलिजेंस कहते हैं। बुद्धि में भाषा-ज्ञान, याददाश्त, सीखने की काबिलियत, तर्कशीलता आदि बातें शामिल हैं। रोबोट तो परिवेश में मौजूद चीज़ों के मुताबिक अपना व्यवहार बदलते हैं, जबकि बुद्धि में कुछ तो अंदरूनी है।

भाषाविज्ञानी नोम चोम्स्की का मानना है कि भाषा सीखने की जन्मजात काबिलियत के बरक्स परिवेश में मौजूद चीज़ों या तजुर्बों का असर भाषा-ज्ञान पर कम होता है। एआई का बहुत सारा शोध इस सोच पर हो रहा है कि ऐसी काबिलियत जिस्म की अंदरूनी प्रक्रियाओं से ही बनती है, जबकि रोबोटिक्स में परिवेश के साथ जद्दोजहद एक लगातार चल रहा संघर्ष है।

ये एआई की दो अलग-अलग धाराएं हैं। एक संज्ञान का विज्ञान और दूसरी रोबोट मशीनें। पहली धारा में कंप्यूटेशन यानी अमूर्त गणनाओं को ही संज्ञान का आधार माना गया है। इसमें कंप्यूटेशन के दार्शनिक आधार को समझना लाज़मी है, जो एक विकसित, पर साथ ही अनसुलझा मुद्दा है। वॉरेन मैकलो और वाल्टर पिट्स नामक दो वैज्ञानिकों ने यह दिखलाया था कि दिमाग में काम कर रहे न्यूरॉन का खाका सैद्धांतिक रूप से कंप्यूटर के अंदरूनी खाके की तरह है। न्यूरॉन कंप्यूटर में गणनाओं के लिए बने लॉजिक गेट की तरह काम करते हैं और इनका एक जैसा इस्तेमाल हो सकता है। दिमाग समेत ऐसी किसी भी मशीन को एक बुनियादी कंप्यूटर की तरह समझा जा सकता है।

मशहूर गणितज्ञ और दार्शनिक ऐलन ट्यूरिंग के नाम पर इस बुनियादी कंप्यूटर को ट्यूरिंग मशीन कहा जाता है, जो किसी भी तरह के (युनिवर्सल) कंप्यूटेशन का मॉडल पेश करती है। ज़ाहिर है, सिद्धांत में एक जैसी होने के बावजूद हर मशीन के काम करने का तरीका अलग होता है। यानी कंप्यूटर प्रोग्राम कीबोर्ड से लिखे जाते हैं और बिजली के सर्किटों से चलते हैं, पर दिमाग न्यूरॉन सिग्नलों (जैव-रासायनिक) से चलता है। अगर दोनों एक ही जैसे काम (फंक्शन) कर रहे हैं तो व्यावहारिक तौर पर दोनों को एक ही माना जा सकता है। मन और जिस्म में फर्क करने वाले इस खयाल को फंक्शनलिज़्म (functionalism) कहा जाता है। इसके मुताबिक संज्ञान किसी एक मशीन या दिमाग के दायरे में बंधा नहीं है, बल्कि महज़ एक ढांचे की (दिमाग या कंप्यूटर का हार्डवेयर)  मदद से यह सक्रिय हो रहा है। यानी कुछ संकेतों (लॉजिक गेट) की मदद से हम सही समझ पाते हैं और जीवन की गाड़ी चल पड़ती है। जहां तक खयाली दुनिया में गोते लगाने की बात है, इसके लिए ट्यूरिंग ने एक टेस्ट सोचा। अगर किसी मशीन से इंसान को यह भ्रम हो कि वो वाकई में मशीन नहीं, बल्कि कोई इंसान है, तो वो मशीन ट्यूरिंग टेस्ट पास कर जाएगी। 1990 में इस आधार पर एक पुरस्कार की घोषणा हुई कि कोई भी ट्यूरिंग टेस्ट पास करने वाली पहली मशीन बना ले तो उसे एक लाख डॉलर दिए जाएंगे। अभी तक यह पुरस्कार किसी को नहीं मिला है। एक समस्या यह है कि यह टेस्ट पूरी तरह इंसान और मशीन के बीच बातचीत पर निर्भर है यानी यह महज भाषा के पक्ष पर आधारित है। अगर कोई मशीन भाषा की तमाम जटिलताओं में माहिर हो जाए तो हो सकता है कि वह ट्यूरिंग टेस्ट पास कर जाए, पर क्या हम उसे इंटेलिजेंट कह सकते हैं?

एआई में जटिलता या कॉम्प्लेक्सिटी (complexity) थिअरी नामक विज्ञान की धारा का भी इस्तेमाल हुआ है, जिसमें किसी चीज़ में विकसित हुए जटिल खाके के मुताबिक उसकी फितरत में बदलाव आता है। मसलन एक छोटी चिंगारी आसपास की जलने वाली चीज़ों में आग लगा सकती है, पर एक निश्चित आकार के बाद ही वह दावानल बन भड़क सकती है। इसी तरह जब बच्चे रेत का ढेर बनाते हैं, तो देर तक वह पिरामिड-सा बढ़ता है, पर एक हद के बाद वह भरभराकर गिर पड़ता है। इसे एमर्जेंट यानी योगेतर गुण कहा जाता है – ऐसा गुण जो किसी चीज़ के अलग-अलग टुकड़ों में नहीं होता मगर पूरी चीज़ में उभरकर दिखता है। कुदरत में कई टुकड़ों के अपने-आप एक खाके में जुड़कर कुछ अनोखा होने की कई मिसालें हैं, जिसे सेल्फ-ऑर्गनाइज़ेशन (खुद को संगठित करना) कहा जाता है। पिछले कई दशकों में इस सेक्टर में, खास तौर पर जैविक मिसालों पर, बहुत शोध हुआ है। किसी चीज़ में अचानक उभरी फितरत को उसके टुकड़ों की प्रकृति को जानकर नहीं समझा जा सकता है। एआई में एक सोच यह है कि इंटेलिजेंस एक एमर्जेंट बात है। जीन्स को जानकर हम यह तो जान लेते हैं कि हम जो हैं, वह कैसे मुमकिन हुआ, पर संज्ञान को हम इस तरह नहीं जान सकते। सर्वांगीण समझ कुछ और है, जो एमर्जेंट गुण है। ज़ाहिर है, बगैर मशीन के तो समझ विकसित होना नामुमकिन है, पर यह भी नहीं कहा जा सकता कि मशीन बनने भर से समझ बन जाएगी। इसके लिए कोई सही प्रोग्राम लिखे जाने की ज़रूरत होगी। तो क्या हम फिर मन और जिस्म को अलग-अलग मान रहे हैं? दिमागी पहेलियां क्या महज प्रोग्राम का खेल हैं? इन विवादों पर हम अगले लेखों में चर्चा करेंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://shooliniuniversity.com/blog/wp-content/uploads/2021/08/artificial-intelligence-shoolini-university-best-himachal-pradesh-university.jpg

प्रातिक्रिया दे