हंसाता है, सोचने को विवश करता है इग्नोबेल पुरस्कार

र वर्ष की तरह इस वर्ष भी पहली नज़र में हास्यास्पद लेकिन महत्वपूर्ण खोजों को पुरस्कृत करने के लिए 31वां इग्नोबेल पुरस्कार समारोह आयोजित किया गया। कोरोना महामारी के चलते इस वर्ष भी यह समारोह ऑनलाइन किया गया जिसमें संगीतमय बिल्लियां, औंधे गेंडे और पनडुब्बी में कॉकरोच से बचाव आकर्षण का केंद्र रहे। इस वर्ष की थीम इंजीनियरिंग थी और इग्नोबेल पुरस्कारों का वितरण फ्रांसिस अर्नाल्ड और एरिक मैसकिन सहित अन्य नोबेल विजेताओं ने किया।

कुल 10 इग्नोबेल पुरस्कारों में से जीव विज्ञान का पुरस्कार बिल्लियों की विभिन्न ध्वनियों के अध्ययनों की एक शृंखला को दिया गया है। ऐसा लगता है कि बिल्लियां इन ध्वनियों का उपयोग मनुष्यों को अपनी इच्छाओं से अवगत कराने के लिए करती हैं। लुंड युनिवर्सिटी की बिल्ली-वाणि शोधकर्ता सुज़ैन शॉट्ज़ 2011 से माइक्रोफोन को बिल्लियों के हाथ में देकर उनकी विभिन्न ध्वनियों को सुनने और उनकी म्याऊं का मतलब खोजने का प्रयास कर रही थीं।

शॉट्ज़ को यह सम्मान कई शोध पत्रों के लिए दिया गया है। इनमें वह शोध पत्र भी शामिल है जिसमें यह बताया गया है कि मनुष्य कितनी अच्छी तरह से बिल्लियों की म्याऊंसिकी को समझ पाते हैं। शॉट्ज़ बताती हैं कि जब बिल्लियों को अपने मालिकों से भोजन चाहिए होता है तो उनकी ध्वनि अंत में ऊंचे तारत्व की होती है। यदि वे चिकित्सक के पास जाने को लेकर डर रही होती हैं तब वे तारत्व को कम कर देती हैं। गौरतलब है कि तारत्व का सम्बंध आवाज़ के पतली-मोटी होने से है – अधिक तारत्व मतलब ज़्यादा पतली आवाज़। उन्होंने जब 30 लोगों के समूह को बिल्लियों की ध्वनियों के उतार-चढ़ाव सुनाए तो अधिकांश समय वे बिल्लियों की भावनाओं का अनुमान लगा पाए थे। इनमें बिल्लियों के मालिकों के अनुमान बेहतर रहे।

जीव विज्ञान के अन्य पुरस्कार ऐसे जीवों पर शोध करने के लिए दिए गए जिन्होंने आसमान की बुलंदियों को छुआ या समुद्र की गहराइयों में गोते लगाए।

ट्रांसपोर्टेशन पुरस्कार से उन शोधकर्ताओं को सम्मानित किया गया जिन्होंने यह पता लगाया कि हेलीकॉप्टर से गैंडों को लाने-ले जाने की सबसे अच्छी तकनीक उनको उल्टा करके (पीठ के बल) ले जाना है। यह तकनीक संरक्षणवादियों के लिए काफी उपयोगी साबित हुई है जो चाहते हैं कि गैंडों और हाथियों जैसे बड़े जीवों को शिकारियों से सुरक्षित रखा जाए या उनकी आनुवंशिक विविधता को बनाए रखा जाए। इसमें मज़ेदार बात यह है कि शोधकर्ताओं ने पुरस्कार लेते समय यह बताया कि गैंडों पर यह तकनीक अपनाने से पहले इसे वे खुद पर आज़मा चुके थे। अलबत्ता, पुरस्कार देने वाले नोबेल विजेता रिचर्ड रॉबट्र्स ने स्पष्ट कर दिया कि यदि उन्हें कभी कहीं ले जाना पड़े तो मेहरबानी करके सीधा ही ले जाएं।

कीट विज्ञान के पुरस्कार ने मानव-पशु तनावपूर्ण सम्बंधों को उजागर किया। मनुष्यों और तिलचट्टों की लड़ाई काफी प्राचीन रही है। इस पुरस्कार के लिए समिति ने विज्ञान साहित्य के संग्रहालय में डुबकी लगाकर 1971 का एक अध्ययन A new method of cockroach control on submarines (पनडुब्बियों में तिलटट्टा नियंत्रण की एक नई विधि) खोज निकाला। पुरस्कार अमेरिकी नौसेना के सेवानिवृत्त कमोडोर जॉन मुलरीनन जूनियर को दिया गया। उन्होंने नौसेना की पनडुब्बियों में तिलचट्टों से छुटकारा पाने के लिए डाइक्लोरवॉस नामक कीटनाशक का उपयोग किया था। इससे पहले एथिलीन ऑक्साइड गैस का उपयोग किया जाता था जिसके उपयोग से कोई बीमार हो गया था। उस समय तो नौसेना को यह तकनीक काफी उपयोगी व कारगर लगी थी, हालांकि कमोडोर मुलरेनिन ने कहा कि वे नहीं जानते कि क्या आजकल भी नौसेना इसका इस्तेमाल करती है।

भौतिकी पुरस्कार एक ऐसे शोध के लिए दिया गया जिसमें यह विश्लेषण किया गया था कि भीड़ में चलते समय लोग एक दूसरे से टकराते क्यों नहीं हैं और काइनेटिक्स पुरस्कार इस अध्ययन के लिए दिया गया कि लोग कभी-कभी टकरा क्यों जाते हैं।

इकॉलॉजी पुरस्कार एक बैक्टीरिया के विश्लेषण पर दिया गया जो उपयोग की गई च्युइंग गम पर पनपता है। इसके अलावा शांति पुरस्कार इस अध्ययन पर दिया गया कि दाढ़ी कितने प्रभावी ढंग से घूंसे से चेहरे की रक्षा करती है (यह झटके को कम कर देती है)। चिकित्सा पुरस्कार ऐसे अध्ययन के लिए दिया गया जिसमें यह बताया गया कि यौन चरमोत्कर्ष बंद नाक खोलने में प्रभावी हो सकता है (होता है, लेकिन असर सिर्फ एक घंटे रहता है)।

विजेताओं को एनल्स ऑफ इम्प्रॉबेबल रिसर्च के संपादक और इस समारोह के मेज़बान मार्क अब्राहम की ओर से एक नकली 10 ट्रिलियन ज़िम्बाब्वे डॉलर का नोट भी दिया गया। ट्राफी के रूप में खुद से बनाने के लिए एक घनाकार पेपर का गियर दिया गया जिस पर दांतों की तस्वीरें बनी थीं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.abc.net.au/science/k2/lint/img/trophy.jpg

शोध डैटा में हेर-फेर

क एक डच सर्वेक्षण में लगभग आठ प्रतिशत वैज्ञानिकों ने यह बात मानी है कि वर्ष 2017 से 2020 के बीच उन्होंने कम से कम एक बार मिथ्या डैटा या मनगढ़ंत डैटा का उपयोग किया था। सर्वेक्षण में वैज्ञानिकों के नाम गोपनीय रखे गए थे। लगभग 10 प्रतिशत से अधिक चिकित्सा और जीव विज्ञान के शोधकर्ताओं ने भी डैटा में इस तरह के हेर-फेर की बात स्वीकार की है। मेटाआर्काइव (MetaArxiv) प्रीप्रिंट में प्रकाशित इस अध्ययन के लिए शोधकर्ताओं ने अक्टूबर 2020 से दिसंबर 2020 के बीच नेदरलैंड के 22 विश्वविद्यालयों के लगभग 64,000 शोधकर्ताओं से संपर्क किया था, जिनमें से 6,813 ने उत्तर दिए थे।

वर्ष 2005 में यूएस नेशनल इंस्टीट्यूट ऑफ हेल्थ द्वारा इसी मुद्दे पर एक अध्ययन किया गया था जिसमें बहुत कम वैज्ञानिकों ने माना था कि उन्होंने मिथ्या डैटा का उपयोग किया है या डैटा गढ़ा है; अध्ययन में शामिल 3,000 वैज्ञानिकों में से 0.3 प्रतिशत वैज्ञानिकों ने यह बात कबूली थी।

डच सर्वेक्षण की अध्ययनकर्ता गौरी गोपालकृष्णन का कहना है कि संभावना है कि पूर्व अध्ययन में डैटा में हेर-फेर की बात स्वीकार करने वाले शोधकर्ताओं का प्रतिशत कम आंका गया हो। क्योंकि पूर्व अध्ययनों में इस मुद्दे पर सवाल घुमा-फिरा कर पूछे गए थे जबकि डच अध्ययन में सवाल सीधे-सीधे किए थे। और इसी कारण से अन्य अध्ययनों के परिणामों से डच अध्ययन के परिणाम की तुलना करने में सावधानी रखनी होगी। वैसे, वर्ष 2001 में डच अध्ययन के तरीके से ही किए गए एक अन्य अध्ययन में लगभग 4.5 प्रतिशत वैज्ञानिकों ने माना था कि कम से कम एक बार उन्होंने डैटा के साथ छेड़छाड़ की है।

डच सर्वेक्षण में 51 प्रतिशत वैज्ञानिकों ने 11 ‘आपत्तिजनक अनुसंधान आचरण’ (क्यूआरपी) में से कम से कम एक की बात भी स्वीकारी – जैसे शोध की अपर्याप्त योजना के साथ काम करना, या जानबूझकर पांडुलिपियों या अनुदान प्रस्तावों का निष्पक्ष आकलन न करना। आपत्तिजनक अनुसंधान आचरण को डैटा में हेर-फेर, साहित्यिक चोरी वगैरह की तुलना में कम बुरा माना जाता है।

आपत्तिजनक अनुसंधान आचरण कबूल करने वालों में पीएच.डी. छात्रों, पोस्टडॉक और जूनियर फैकल्टी के होने की संभावना ज़्यादा थी लेकिन डैटा में हेर-फेर और डैटा गढ़ने की बात स्वीकार करने का कोई उल्लेखनीय सम्बंध इस बात से नहीं दिखा कि शोधकर्ता अपने करियर के किस मुकाम पर थे। अलबत्ता, पूर्व अध्ययनों में पाया गया था कि जो शोधकर्ता अपने करियर के मध्य स्तर पर हैं उनकी तुलना में जूनियर शोधकर्ता ऐसे आचरणों में कम लिप्त होते हैं।

कुछ शोधकर्ताओं का कहना है कि डैटा मिथ्याकरण के इन आंकड़ों पर सावधानी से विचार किया जाना चाहिए। लंदन स्कूल ऑफ इकॉनॉमिक्स एंड पॉलिटिकल साइंस में शोध दुराचार, नैतिकता और पूर्वाग्रह का अध्ययन करने वाले डेनियल फेनेली ने 2009 में एक मेटा-विश्लेषण किया था जिसमें लगभग दो प्रतिशत शोधकर्ताओं ने मिथ्या डैटा, डैटा गढ़ने या उसमें हेर-फेर करने की बात स्वीकार की थी। इसके अलावा, डच अध्ययन में यह भी स्पष्ट नहीं है कि पिछले तीन वर्ष में ऐसा करने की बात कबूलने वाले शोधकर्ताओं ने वास्तव में ऐसा कितनी बार किया, उनके कितने शोधपत्रों में परिवर्तित डैटा था और क्या उन्होंने वह काम प्रकाशित किया था। अनुसंधान दुराचार होते रहते हैं, लेकिन ये हो रहे हैं इसका पता लगाना और इन्हें साबित करना बहुत मुश्किल है। इसके अलावा अनुसंधान संस्थान भी इन मुद्दों पर पारदर्शिता नहीं दर्शाते।

गोपालकृष्णन और उनके साथियों ने इसी सर्वेक्षण के डैटा का उपयोग कर ज़िम्मेदार अनुसंधान आचरण की पड़ताल करता हुआ एक अन्य अध्ययन मेटाआर्काइव प्रीप्रिंट में प्रकाशित किया है। अध्ययन में पाया गया कि 99 प्रतिशत वैज्ञानिक आम तौर पर साहित्यिक चोरी से बचते हैं, 97 प्रतिशत वैज्ञानिकों ने हितों के टकराव का खुलासा किया और 94 प्रतिशत वैज्ञानिक प्रकाशन से पहले पांडुलिपि में त्रुटियों की जांच करते हैं। लगभग 43 प्रतिशत शोधकर्ताओं ने ही कहा कि वे प्रयोग सम्बंधी प्रोटोकॉल पहले से पंजीकृत करते हैं, 47 प्रतिशत वैज्ञानिक ही मूल डैटा उपलब्ध कराते हैं, और 56 प्रतिशत वैज्ञानिक ही व्यापक शोध रिकॉर्ड रखते हैं। गोपालकृष्णन का कहना है कि डैटा में हेर-फेर जैसे अनुसंधान दुराचार पर बहुत अधिक ध्यान दिया जाता है, लेकिन अनुसंधान में लापरवाही को नज़रअंदाज़ कर दिया जाता है। हमें एक ऐसे माहौल की ज़रूरत है जहां गलतियों को अपराध न माना जाए, आचरण ज़िम्मेदारीपूर्ण हो, और धीमी गति से लेकिन अच्छी गुणवत्ता वाले शोध पर अधिक ध्यान दिया जाए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_large/public/metaresearch_1280p.jpg?itok=22Wnx4RP

फलियों को सख्त खोल कैसे मिला

गुलाब से लेकर बेशरम और चावल तक के फूलदार पौधे (आवृतबीजी या एंजियोस्पर्म) पृथ्वी के सबसे विविध और सफल जीवों में से हैं। इनकी 3,50,000 से अधिक प्रजातियां सुंदर, पौष्टिक और अपने-अपने पारिस्थितिकी तंत्र के लिए महत्वपूर्ण हैं। लेकिन डारविन के समय से ही जैव विकास के अध्येताओं के लिए यह एक गुत्थी रही है कि इनका विकास किस तरह हुआ। अब अत्याधुनिक तकनीक और मंगोलिया में मिले जीवाश्मों की मदद से शोधकर्ता इसे हल करने की दिशा में आगे बढ़े हैं।

आवृतबीजी लगभग 12.5 करोड़ वर्ष पहले विकसित हुए और पूरी पृथ्वी पर छा गए। ये बीजों के माध्यम से प्रजनन करते हैं, कुछ उसी तरह जिस तरह इनके पूर्व विकसित हुए चीड़, देवदार, गिंकगो जैसे नग्नबीजी (जिम्नोस्पर्म) करते हैं। लेकिन आवृतबीजियों में बीज निर्माण में कुछ नवाचार हुए जिससे वे फैलने में अधिक सफल हुए।

इनके फूलों के केंद्र में एक नलीदार संरचना स्त्रीकेसर होती है। स्त्रीकेसर का वर्तिकाग्र पराग ग्रहण करता और उसे अंडाशय में भेज देता है, जहां बीज विकसित होते हैं। यही अंडाशय आगे जाकर फली के रूप में परिपक्व होता है। इस तरह एंजियोस्पर्म के बीजों पर दो आवरण – आंतरिक और बाहरी आवरण – बनते हैं। बाहरी आवरण जैसे मटर के दाने का बाहरी छिलका या सेम की रंगीन सतह।

एंजियोस्पर्म का विकास जिम्नोस्पर्म से हुआ है। लेकिन यह रहस्य ही रहा है कि इनमें स्त्रीकेसर और बीज की दूसरी परत कैसे विकसित हुई। पूर्व में, चाइनीज़ एकेडमी ऑफ साइंसेज़ के जीवाश्म-वनस्पति विज्ञानी गोंगल शी और उनके साथियों को यूके, चीन और अंटार्कटिका से ऐसे जिम्नोस्पर्म के जीवाश्म मिले थे जिनके बीज कप जैसे आकार के बाहरी आवरण से ढंके थे। इन कप-नुमा बाहरी आवरण को उन्होंने कप्यूल नाम दिया और संभावना जताई कि इसी रचना से एंजियोस्पर्म में बीज के दूसरे बाहरी कवच के विकास की शुरुआत हुई होगी।

लेकिन वर्तमान में किसी भी जीवित पौधे में इस तरह के कप्यूल नहीं दिखते और शोधकर्ताओं को जो जीवाश्म मिले थे वे आंशिक रूप से सड़ चुके पौधों के थे, जिससे इनका पूरी तरह से विश्लेषण करना असंभव रहा।

इसके बाद 2015 में शोधकर्ताओं को मंगोलिया की जारूद बैनर नामक कोयला खदान से पत्थर में बहुत ही अच्छी तरह से संरक्षित दलदली पौधे का जीवाश्म मिला; इस जीवाश्म में भी कप्यूल थे। सूक्ष्मदर्शी से अध्ययन करने के लिए शोधकर्ताओं ने पत्थर को हीरे की आरी से काटा, पॉलिश किया और सतह को एसिड की मदद से तराशा ताकि जीवाश्म की छीलन तैयार की जा सके। इसके अलावा त्रि-आयामी संरचना बनाने के लिए उन्होंने कप्यूल्स का सीटी स्कैन भी किया। उन्होंने पाया कि आधुनिक एंजियोस्पर्म बीजों के बाहरी आवरण की तरह ही इस कप्यूल के ऊतक भी विकसित होते बीजों के चारों ओर लिपटे हुए थे।

कप्यूल-युक्त अन्य जीवाश्मों से इनकी तुलना करने पर शोधकर्ताओं ने पाया कि ये सभी पौधों के उस समूह में आते हैं जिनमें विभिन्न तरह के कप्यूल होते हैं। इन जीवाश्मों से न सिर्फ यह पता चलता है कि बीज में दूसरा आवरण कैसे आया, बल्कि यह भी पता चलता है कि स्त्रीकेसर कैसे विकसित हुए – इन कप्यूल्स में कुछ इस तरह की पत्तियां भी दिखाई दीं जो आगे जाकर स्त्रीकेसर में विकसित हुई होंगी। बहरहाल, इस तरह की और भी खोज और अध्ययन की ज़रूरत है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_large/public/peas_1280p.jpg?itok=8YoEjulZ

ठंडक देने वाले ‘दर्पण’ वस्त्र

ठंड से बचने के लिए गर्म कपड़े बनाना तो आसान है लेकिन झुलसाती गर्मी में शरीर को ठंडा रखने वाले कपड़े बनाना मुश्किल है। और अब, वैज्ञानिकों ने ऐसा कपड़ा तैयार किया है जो दिखने में साधारण कपड़े जैसा लगता है लेकिन यह शरीर का तापमान लगभग पांच डिग्री सेल्सियस तक कम कर सकता है।

वैसे तो हम गर्मी से राहत पाने के लिए हल्के रंग के कपड़े पहनते हैं ताकि ऊष्मा कम अवशोषित हो। इसके अलावा ऐसा कपड़ा भी तैयार किया जा चुका है जो पराबैंगनी विकिरण और निकट-अवरक्त विकिरण को भी परावर्तित कर देता है। निकट-अवरक्त विकिरण का अवशोषण किसी वस्तु को गर्म कर देता है और उसका उत्सर्जन होने पर धीरे-धीरे वस्तु ठंडी हो जाती है। लेकिन शीतलन की इस प्रक्रिया में वातावरण बाधक बन जाता है: उत्सर्जित होने के बाद निकट-अवरक्त विकिरण को अक्सर आसपास मौजूद पानी के अणु सोख लेते हैं और नतीजतन वातावरण को गर्म कर देते हैं।

शीतलन को तेज़ करने के लिए शोधकर्ताओं ने निकट-अवरक्त विकिरण की जगह मध्यम-अवरक्त विकिरण का रुख किया। मध्यम-अवरक्त विकिरण की तरंग लंबाई अधिक होती है, और मध्यम-अवरक्त विकिरण आसपास की हवा में अवशोषित होने की बजाय सीधे अंतरिक्ष में बिखर जाता है। लिहाज़ा, वस्तु व उसका परिवेश दोनों ठंडे रहते हैं। पिछले एक दशक से इस तकनीक की मदद से छतें, प्लास्टिक फिल्म, लकड़ी और अति-सफेद पेंट्स बनाए जा रहे हैं।

गौरतलब है कि मानव शरीर प्राकृतिक तौर पर मध्यम-अवरक्त विकिरण का उत्सर्जन करता है। 2017 में, स्टैनफोर्ड विश्वविद्यालय के शोधकर्ताओं ने ऐसा कपड़ा तैयार किया था जो मानव शरीर से उत्सर्जित इस मध्यम-अवरक्त विकिरण को अवशोषित करने की बजाय उसे अपने में से गुज़रने देता है, जिससे इस कपड़े को पहनने वाले के शरीर का तापमान लगभग तीन डिग्री सेल्सियस तक कम हो जाता है। लेकिन यह कपड़ा बहुत पतला – लगभग 45 माइक्रोमीटर या हल्के लिनेन के कपड़े की एक-तिहाई मोटाई का – होने पर ही काम कर सकता था। और इतना पतला होने पर संभवत: यह टिकाऊ न रहता।

टिकाऊ कपड़ा बनाने के लिए झेजियांग विश्वविद्यालय और हुआज़ोंग विज्ञान एवं टेक्नॉलॉजी विश्वविद्यालय के शोधकर्ताओं ने मध्यम-अवरक्त विकिरण वाला ऐसा कपड़ा बनाया जो मानव शरीर से उत्सर्जित ऊष्मा को अपने में से गुज़रने देने की बजाय पहले रासायनिक बंधनों की मदद से उसे अवशोषित करे और फिर मध्यम-अवरक्त विकिरण के रूप में उत्सर्जित कर दे। 550 माइक्रोमीटर मोटाई का यह कपड़ा पॉलीलैक्टिक एसिड और सिंथेटिक फाइबर से बना है जिसमें टाइटेनियम डाईऑक्साइड के नैनोपार्टिकल्स छितरे हुए हैं। यह कपड़ा पराबैंगनी, दृश्य प्रकाश और अवरक्त प्रकाश को परावर्तित भी करता है जो पहनने वाले को और भी ठंडा रखता है। यह कपड़ा दिखने में तो आम शर्ट जैसा है लेकिन वास्तव में यह एक दर्पण है।

इस कपड़े की कारगरता जानने के लिए शोधकर्ताओं ने एक चुस्त फिटिंग वाली बनियान बनाई जिसके आधे हिस्से को दर्पण वाले कपड़े से और बाकी आधे हिस्से को उतनी ही मोटाई के सामान्य सूती कपड़े से बनाया गया था। इस तरह तैयार बनियान को एक व्यक्ति को पहनाकर एक घंटे के लिए धूप में बैठाया गया। साइंस पत्रिका में प्रकाशित नतीजों के अनुसार सामान्य सूती कपड़े की तुलना में दर्पण वाले कपड़े के नीचे की त्वचा का तापमान लगभग पांच डिग्री सेल्सियस कम था। अवरक्त कैमरे से देखने पर यह अंतर एकदम स्पष्ट था, और वह व्यक्ति भी तापमान का यह अंतर महसूस कर पा रहा था।

वैसे, मध्यम-अवरक्त उत्सर्जन तकनीक अब तक धूप में रखी स्थिर सतहों पर ही उपयोग की गई है। इसलिए यह देखना होगा कि खड़े या चलते-फिरते व्यक्ति के मामले में यह कपड़ा शरीर को कितना ठंडा रख पाता है। ढीले-ढाले साधारण फिटिंग वाले वस्त्रों पर भी जांच करनी होगी क्योंकि ठंडक पैदा करने वाले तत्वों की क्रिया तो इस बात पर निर्भर है कि वे त्वचा से कितने सटे हुए हैं।

बहरहाल यह काम विकिरण शीतलन के क्षेत्र में तेज़ी से हो रही प्रगति दर्शाता है। इस तरह के कपड़े सूती कपड़ों जैसे ही महसूस होंगे, जो उपयोगकर्ता के लिए महत्वपूर्ण है। शोधकर्ताओं का कहना है कि इस तरह के कपड़े निर्माण लागत में केवल 10 प्रतिशत की ही बढ़ोतरी करेंगे, इसलिए इन तक सबकी पहुंच संभव है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/cooling-shirt_700p.jpg?itok=4eJ-RfAw

टेक्नॉलॉजी का सहस्राब्दी पुरस्कार – डॉ. डी. बालसुब्रमण्यन, सुशील चंदानी

र्ष 2020 के सहस्राब्दी टेक्नॉलॉजी पुरस्कार की घोषणा मई में की गई। यह पुरस्कार डीएनए अनुक्रमण (सिक्वेंसिंग) की क्रांतिकारी तकनीक के विकास हेतु शंकर बालसुब्रमण्यन और डेविड क्लेनरमैन को दिया गया है। उनका काम विज्ञान और नवाचार का उत्कृष्ट संगम है। यह बहुत प्रासंगिक भी है क्योंकि वर्तमान महामारी के संदर्भ में हम सबने जीनोम अनुक्रमण के बारे में खूब सुना है।

नवाचार पर ज़ोर

यह पुरस्कार फिनलैंड की सर्वोच्च अकादमियों और उद्योगों के साथ मिलकर फिनलैंड गणतंत्र द्वारा दिया जाता है। सहस्राब्दी पुरस्कार में इक्कीसवीं सदी का नज़रिया है जिसमें नवाचार पर बहुत ज़ोर है। अतीत में इस पुरस्कार के विजेताओं में टिम बर्नर्स ली (वर्ल्ड वाइड वेब के क्रियांवयन के लिए) और फ्रांसिस अरनॉल्ड (प्रयोगशाला की परिस्थितियों में निर्देशित जैव विकास पर शोध के लिए) शामिल रहे हैं। एक गौरतलब बात है कि ग्यारह में से सात पुरस्कार विजेताओं को आगे चलकर नोबेल पुरस्कार से भी सम्मानित किया जा चुका है। तो हम दिल थामकर बालसुब्रमण्यन और क्लेरमैन का इन्तज़ार करें।

शंकर बालसुब्रमण्यन का जन्म चेन्नै में हुआ था और उन्होंने अपना अधिकांश जीवन इंग्लैंड में बिताया। पीएच.डी. करने के बाद वे कैम्ब्रिज विश्वविशलय के रसायन विभाग से जुड़ गए। लगभग उसी समय क्लेरमैन भी विभाग में आए और दोनों की टीम बन गई। शुरुआती लक्ष्य तो एक ऐसा सूक्ष्मदर्शी बनाने का था जो इकलौते अणुओं को देख सके। बालसुब्रमण्यन की विशेष रुचि उस आणविक मशीनरी में थी जिसका उपयोग डीएनए अपनी प्रतिलिपि बनाने में करता है। बातचीत में कभी इस विचार का कीड़ा कुलबुलाया कि डीएनए की वर्णमाला को पढ़ने का कोई नया तरीका निकाला जाए ताकि डीएनए में संग्रहित सूचना तक आसानी से पहुंचा जा सके।

डीएनए (या कुछ वायरसों में आरएनए) सजीवों की जेनेटिक सामग्री होती है। यह चार क्षारों से बना होता है – ए, टी, जी और सी। आरएन के संदर्भ में टी का स्थान यू नामक क्षार ले लेता है। गुणसूत्र इन्हीं क्षारों की एक रैखीय दोहरी शृंखला होता है। डीएनए में क्षारों का क्रम ही सूचना होता है। यही जीवन की कुंडली है। जीवन अपनी प्रतिलिपि बना सकता है और डीएनए एक एंज़ाइम – डीएनए पोलीमरेज़ – की मदद से स्वयं की प्रतिलिपि बनाता है। इस एंज़ाइम की मदद से डीएनए का कोई भी सूत्र अपना पूरक सूत्र बना सकता है।

नवाचारी विचार

बालसुब्रमण्यन और क्लेरमैन का नवाचारी विचार यह था कि सूत्र के संश्लेषण की इस प्रक्रिया की मदद से डीएनए (या आरएनए) का अनुक्रमण किया जाए। उन्होंने चतुराई से ए, टी, जी और सी क्षारों को इस तरह बदला कि हरेक एक अलग रंग में चमकता था। जब प्रतिलिपि बनती तो डीएनए की ‘रंगीन’ प्रति के मात्र रंगों के आधार पर क्षारों का पता लगाया जा सकता था। इसके लिए सूक्ष्म प्रकाशीय व इलेक्ट्रॉनिक उपकरणों की ज़रूरत पड़ती थी।

उनके इस ‘नई पीढ़ी के अनुक्रमण’ (NGS) की महत्वपूर्ण बात यह है कि इसकी मदद से एक बार में डीएनए की बड़ी साइज़ का अनुक्रमण किया जा सकता है – एक बार में 10 लाख से ज़्यादा क्षार जोड़ियों का अनुक्रमण संभव है। इसका मतलब है कि एक बार में सैकड़ों जीन्स और किसी-किसी जीव के पूरे जीनोम का अनुक्रमण हो सकता है। यह संभव हो पाता है एक साथ डीएनए के सैकड़ों खंडों का अनुक्रमण करके। एक लंबे डीएनए अणु को बेतरतीबी से छोटे-छोटे टुकड़ों में तोड़ दिया जाता है। प्रत्येक टुकड़े में चंद सैकड़ा क्षार होते हैं। इन सबका अनुक्रमण एक साथ किया जाता है। इसके बाद इन अलग-अलग अनुक्रमों को किसी पहेली के समान आपस में जोड़कर पूरी शृंखला पता की जाती है।

बालसुब्रमण्यन और क्लेरमैन की पहल पर इस टेक्नॉलॉजी ने सोलेक्सा के रूप में व्यापारिक स्वरूप हासिल कर लिया है। इस निहायत सफल स्टार्टअप को बाद में बायोटेक कंपनी इल्यूमिना ने अधिग्रहित कर लिया।

घटती लागत

इस सारे अनुक्रमण की लागत की बात करते हैं। जब ह्यूमन जीनोम प्रोजेक्ट ने पहला लगभग पूरा जीनोम अनुक्रमित किया था, तब उसकी अनुमानित लागत 3 अरब डॉलर थी। चूंकि हमारे सारे गुणसूत्रों में कुल मिलाकर 3 अरब क्षार जोड़ियां हैं, तो यह गणना आसान है कि अनुक्रमण की लागत 1 डॉलर प्रति क्षार जोड़ी थी। वर्ष 2020 तक NGS टेक्नॉलॉजी की बदौलत आपके पूरे जीनोम के अनुक्रमण की लागत घटकर चंद हज़ार डॉलर रह गई। जब यह टेक्नॉलॉजी भारत में प्रचलित होगी तब इसकी लागत चंद हज़ार रुपए होगी!

कोरोनावायरस के जीनोम में 3 अरब नहीं बल्कि मात्र 30,000 आरएनए क्षार हैं। तब कोई अचरज की बात नहीं कि हमारे पास नए कोरोनावायरस और उसके वैरिएन्ट्स के जीनोम को लेकर जानकारी का अंबार है। यूके में स्वास्थ्य अधिकारियों ने हर सोलह पॉज़िटिव व्यक्तियों में से 1 के वायरस जीनोम का अनुक्रमण किया है। लोकप्रिय जीनोम डैटा साझेदारी साइट GSAID पर 172 देशों से 20 लाख से ज़्यादा सार्स-कोव-2 जीनोम अनुक्रम उपलब्ध हैं। दुनिया भर में कोरोनावायरस के नए-नए संस्करणों के प्रसार और उत्पत्ति की निगरानी NGS के दम पर ही संभव हुई है।

शंकर बालसुब्रमण्यन आज भी एक बढ़िया प्रयोगशाला का संचालन करते हैं, जो ऐसे उपचारात्मक अणु की डिज़ाइन पर केंद्रित है जो कई जीन्स की बेलगाम अभिव्यक्ति को नियंत्रित करके कैंसर जैसी स्थितियों में उनके द्वारा किए जाने वाले नुकसान को रोक सकेंगे। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://th.thgim.com/sci-tech/science/c6n9jx/article35254815.ece/ALTERNATES/FREE_660/11TH-SCIWINNERSjpg

पुतली का आकार और बुद्धिमत्ता

हते हैं कि आंखें दिल की ज़ुबां होती हैं। लेकिन हाल ही में किए गए अध्ययन से पता चलता है कि ये हमारे मस्तिष्क का हाल भी बयां करती हैं। आंखों की पुतलियां न सिर्फ प्रकाश के प्रति प्रतिक्रिया देती हैं बल्कि उत्तेजना, रुचि तथा मानसिक थकावट के संकेत भी देती हैं। कई खुफिया एजेंसियां झूठ पकड़ने के लिए भी इनका उपयोग करती हैं।

पुतली आंख के बीच स्थित काले गोलाकार भाग को कहते हैं। इसका आकार लगभग 2 से 8 मिलीमीटर होता है। यह पुतली परितारिका नामक रंगीन क्षेत्र से घिरी होता है जो पुतली के आकार को नियंत्रित करता है।

इस विषय में जॉर्जिया इंस्टीट्यूट ऑफ टेक्नॉलॉजी में किए गए अध्ययन से पता चला है कि पुतली का मूल आकार बुद्धिमत्ता से निकट सम्बंध दर्शाता है। तार्किकता, एकाग्रता और स्मृति जांच में पाया गया कि जितनी बड़ी पुतली, उतनी ही अधिक बुद्धि। तीन अध्ययनों में किए गए संज्ञानात्मक परीक्षणों में सबसे अधिक और सबसे कम अंक प्राप्त करने वाले लोगों की पुतली के आकार में स्पष्ट अंतर देखे गए हैं।

इस अध्ययन में शोधकर्ताओं ने पुतली के फैलाव की तकनीक का उपयोग किया। पुतली के आकार और बुद्धि के बीच के सम्बंध को समझने के लिए एटलांटा समुदाय के 18 से 35 वर्षों के 500 से अधिक लोगों पर अध्ययन किया गया। इसके बाद उन्होंने शक्तिशाली कैमरा और कंप्यूटर से लैस ऑई ट्रैकर की मदद से उनकी पुतली के आकार का मापन किया। इस प्रक्रिया में प्रतिभागियों को लगभग चार मिनट तक कंप्यूटर का खाली स्क्रीन देखने को कहा गया और इस दौरान उनकी पुतली की स्थिर अवस्था को मापा गया। इसके आधार पर प्रत्येक प्रतिभागी की पुतली के औसत आकार की गणना की गई। तेज़ रोशनी में पुतलियां सिकुड़ जाती हैं, इसलिए अध्ययन के दौरान रोशनी मंद रखी गई।              

अध्ययन के अगले भाग में प्रतिभागियों की ‘तरल बुद्धिमत्ता’ (नई समस्याओं के प्रति तर्क करने की क्षमता), ‘कामकाजी स्मृति क्षमता’ (एक समय अवधि तक किसी जानकारी को याद रखने की क्षमता) और ‘एकाग्रता नियंत्रण’ (खलल की स्थिति में ध्यान केंद्रित करने की क्षमता) को मापने के लिए कई संज्ञानात्मक परीक्षण किए गए।

उदाहरण के तौर पर, प्रतिभागियों को कंप्यूटर स्क्रीन के एक सिरे पर बड़े से टिमटिमाते तारे से ध्यान बचाते हुए स्क्रीन के विपरीत सिरे पर एक अक्षर की पहचान करना थी। यह अक्षर कुछ ही क्षणों के लिए प्रकट होता था, इसलिए क्षण भर भी इस टिमटिमाते तारे की ओर ध्यान दिया तो अक्षर नहीं देख पाएंगे। गौरतलब है कि मनुष्य में परिधीय दृष्टि से गुज़रने वाली वस्तुओं पर प्रतिक्रिया करने की प्रवृत्ति होती है लेकिन इस कार्य में अक्षर पर ध्यान केंद्रित करने का निर्देश दिया गया था।     

शोधकर्ताओं ने पाया कि पुतली का मूल आकार तरल बुद्धिमत्ता, एकाग्रता नियंत्रण, और कुछ हद तक कामकाजी स्मृति क्षमता से जुड़ा है। पुतली का आकार उम्र के साथ घटता जाता है। विश्लेषण में इस बात का ध्यान रखते हुए भी यह सम्बंध बना रहता है।

सवाल है कि पुतली के आकार का सम्बंध बुद्धि से कैसे है? शोधकर्ताओं का मानना है कि पुतली का आकार मस्तिष्क के ऊपरी स्टेम में स्थित लोकस कोर्यूलियस की गतिविधि से सम्बंधित है। यह मस्तिष्क के अन्य हिस्सों से तंत्रिकाओं के माध्यम से जुड़ा होता है। लोकस कोर्यूलियस एक रसायन नॉरएपिनेफ्रिन मुक्त करता है जो मस्तिष्क और शरीर में तंत्रिका-संप्रेषक और हॉर्मोन के रूप में कार्य करता है। इसके साथ ही यह अनुभूति, एकाग्रता, सीखने और स्मृति जैसी प्रक्रियाओं को भी नियंत्रित करता है। यह मस्तिष्क की गतिविधियों का समन्वय भी करता है ताकि मस्तिष्क के दूरस्थ क्षेत्र चुनौतीपूर्ण कार्यों और लक्ष्यों को पूरा करने के लिए मिलकर काम कर सकें।

लोकस कोर्यूलियस के काम में गड़बड़ी की वजह से मस्तिष्क के कार्यों में समन्वय अस्त-व्यस्त हो जाता है। इसका सम्बंध अल्ज़ाइमर एवं एकाग्रता के अभाव से देखा गया है। मस्तिष्क की गतिवधियों में समन्वय बहुत महत्वपूर्ण है और मस्तिष्क अपनी अधिकांश ऊर्जा इसको बनाए रखने में खर्च करता है।

एक परिकल्पना यह है कि जिन लोगों में पुतलियों का आकार बड़ा होता है उनमें लोकस कोर्यूलियस की गतिविधि भी अधिक होती है जो संज्ञानात्मक प्रदर्शन के लिए लाभदायक है। फिर भी बड़े आकार की पुतलियों और बुद्धि का सम्बंध समझने के लिए और अधिक शोध की आवश्यकता है। आंखों में अभी काफी रहस्य हैं जिनको अभी और गहराई से समझना है। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://static.scientificamerican.com/sciam/cache/file/97F3CE9C-EDB4-4C0C-B23D057CDC68862F_source.jpg?w=590&h=800&A90F233A-5D00-4BF7-92495D9BA669630D

निएंडरथल की विरासत – डॉ. डी. बालसुब्रमण्यन

स्सी पार के मेरे जैसे लोग तो कलाई पर घड़ी सिर्फ समय देखने के लिए बांधते हैं, लेकिन आज के ‘फैशनपरस्त’ युवा आम तौर पर करीने से फटी हुई जींस और कई सुविधाओं से लैस घड़ी पहनते हैं, जो न केवल समय बताती है बल्कि उनके लिए सही ट्वीट्स, फिल्में और आज का संगीत भी सुनाती हैं। उनकी तुलना में मेरे जैसे लोग म्यूज़ियम में रखे जाने लायक नमूने हैं। लेकिन जब मैं उनमें से कुछ अधिक ‘ज्ञानियों’ से यह पूछता हूं कि यह तकनीकी प्रगति कितने पहले शुरू हुई थी, तो वे गर्व से बताते हैं कि दिल्ली में स्थित कुतुब मीनार और उसका लौह स्तंभ, दोनों ही लौह युग के हैं।

आधुनिक मनुष्य

‘आधुनिक’ मनुष्य अपने अन्य होमिनिन पूर्वजों के साथ लौह युग के बहुत पहले, लगभग तीन लाख साल पहले, से पृथ्वी पर रह रहे हैं। लेकिन ये ‘अन्य’ लोग कौन थे? इनमें से एक ‘अन्य’ मानव पूर्वज है ‘निएंडरथल’, जिनकी हड्डियां सबसे पहले जर्मनी के डसेलडोर्फ के पूर्व में स्थित निएंडर घाटी में मिली थीं। इसलिए इन्हें ‘निएंडरथल’ कहा गया। ये होमिनिन लगभग 4,30,000 साल पहले पृथ्वी पर अस्तित्व में आए थे, लेकिन होमो सेपियन्स के विपरीत इनका विकास (या फैलाव) अफ्रीका में नहीं हुआ। प्रारंभिक मनुष्यों से पहली बार इनका सामना तब हुआ जब मनुष्य अफ्रीका से बाहर निकले।

तब होमो सेपियन्स और इनके बीच प्रतिस्पर्धा हुई या उनके बीच सहयोग का सम्बंध बना? एशिया और युरोप के जिन स्थानों पर इन दो प्रजातियों का आमना-समाना हुआ वहां के लोगों की आनुवंशिकी का अध्ययन कर इन सवालों के जवाब पता लगे हैं। इस तरह के विश्लेषण करने की तकनीकें अब तेज़ी से उन्नत होती जा रही हैं – इसके लिए अब ज़रूरत होती है सिर्फ हड्डी के एक टुकड़े की, और दांत मिल जाए तो और भी अच्छा। विश्लेषण में, हड्डी या दांत में छेद करके कुछ मिलीग्राम पाउडर निकाला जाता है और उस जंतु का डीएनए प्राप्त किया जाता है। फिर उसे अनुक्रमित किया जाता है। कभी-कभी तो इन टुकड़ों की भी आवश्यकता नहीं पड़ती क्योंकि प्राचीन मनुष्यों के आवास स्थलों – जैसे गुफाओं – की तलछट में ही विश्लेषण योग्य डीएनए मिल जाते हैं! आनुवंशिकी की सभी तकनीकी और बौद्धिक प्रगति के पीछे स्वीडिश आनुवंशिकीविद स्वांते पाबो और जैव रसायनज्ञ जोहानेस क्राउस का उल्लेखनीय योगदान है।

‘आधुनिक’ मनुष्य इन क्षेत्रों के स्थानीय लोगों के साथ अंतर-जनन करते थे। साइंस पत्रिका के 9 अप्रैल के अंक में प्रकाशित लेख, निएंडरथल से आधुनिक मनुष्य कब संपर्क में आए, में डॉ. एन गिब्स बताती हैं कि हाल ही में इस अंतर-जनन से जन्मी संकर संतान की जांघ की हड्डी प्राप्त हुई है। प्राप्त नमूनों के हालिया आनुवंशिक विश्लेषण से पता चला है कि बुल्गारिया की बाचो किरो गुफा में निएंडरथल पहले आए थे (50,000 साल से भी पहले) और वहां वे अपने पत्थरों के औजार छोड़ गए थे। इसके बाद आधुनिक मानव दो अलग-अलग समयों पर, लगभग 45,000 पहले और 36,000 साल पहले, वहां आकर रहे, और गुफा में मनके और पत्थर छोड़ गए। 45,000 साल पूर्व इस गुफा में रहने वाले तीन मानव नरों के जीनोम डैटा से पता चलता है कि तीनों की कुछ ही पीढ़ियों पूर्व निएंडरथल इनकी वंशावली में शामिल थे। इससे स्पष्ट रूप से पता चलता है कि इस क्षेत्र में आधुनिक मनुष्य ने वहां के स्थानीय लोगों के साथ अंतर-जनन किया था, और निएंडरथल और आधुनिक मनुष्य का एक संकर समूह बना था। इस संकर समूह में निएंडरथल की विरासत 3.4 प्रतिशत से 3.8 प्रतिशत के बीच थी, (आधुनिक गैर-अफ्रीकियों में यह विरासत लगभग 2 प्रतिशत है)। यह विरासत गुणसूत्र खंड के लंबे-लंबे टुकड़ों के रूप में है, जो प्रत्येक अगली पीढ़ी में छोटे होते जाते हैं। इन टुकड़ों की लंबाई को मापकर यह अनुमान लगाया गया कि निएंडरथल 6-7 पीढ़ी पहले उक्त तीनों के पूर्वज रहे होंगे।

एक अन्य अध्ययन में चेक गणराज्य में ज़्लेटी कुन पहाड़ी से लगभग साबुत मिली एक स्त्री की खोपड़ी, जो लगभग उतनी ही पुरानी है जितनी बाचो किरो से मिले तीन व्यक्तियों के अवशेष, के विश्लेषण में पता चलता है कि लगभग 70 पीढ़ियों (2000 साल) पूर्व निएंडरथल उसके पूर्वज थे।

इन चारों की आनुवंशिक वंशावली का अध्ययन थोड़ा अचंभित करता है कि वर्तमान युरोपीय लोगों में उनके कोई चिंह नहीं मिलते। हालांकि वे वर्तमान के पूर्वी-एशियाई लोगों और मूल अमरीकियों के सम्बंधी हैं। इन युरेशियन गुफा वासियों के वंशज पूर्व की ओर पलायन कर गए, हिम-युगीन बेरिंग जलडमरूमध्य को पार करने की कठिनाई झेली और अमेरिका की वीज़ा-मुक्त यात्रा का आनंद लिया।

इसके बाद आगे के अध्ययनों में निएंडरथल के जीनोम की आधुनिक मनुष्य के साथ तुलना की गई, जिसमें दोनों के डीएनए अनुक्रमों में आनुवंशिक परिवर्तन दिखे। आधुनिक मनुष्य में निएंडरथल से विरासत में मिले गुणसूत्र के खंड घटकर दो प्रतिशत रह गए, लेकिन विरासत में मिले इन नए जींस ने मनुष्यों को क्या लाभ पहुंचाए? इस विरासत की वजह से मनुष्य 4 लाख साल पूर्व ठंडे क्षेत्रों में रहने के लिए अनुकूलित हुआ। निएंडरथल ने हमें अफ्रीकी मनुष्यों से हटकर ठंड के अनुकूल त्वचा और बालों के रंग में भिन्नताएं दीं। इसके साथ ही, अनुकूली चयापचय और प्रतिरक्षा भी दी जिसने नए खाद्य स्रोतों और रोगजनकों के साथ बेहतर तालमेल बैठाने में मदद दी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://th.thgim.com/sci-tech/science/3xkzy9/article34678436.ece/ALTERNATES/FREE_660/30TH-SCINEAN-SKULL

स्तनधारी अपनी आंतों से सांस ले सकते हैं

म तौर पर हमारी आंत भोजन से पोषण लेने का काम करती है और गुदा मल को बाहर निकालने का। लेकिन कृंतकों और सूअरों पर हुए ताज़ा अध्ययन में देखा गया है कि स्तनधारियों की आंत ऑक्सीजन का भी अवशोषण कर सकती है, जो श्वसन संकट की स्थिति से उबरने में मदद कर सकता है। कहा जा रहा है कि भविष्य में इस तरीके से मनुष्यों को ऑक्सीजन की कमी से बचाया जा सकेगा, खासकर उन जगहों पर जहां ऑक्सीजन देने की अन्य सुविधाएं उपलब्ध नहीं हैं।

अधिकांश स्तनधारी जीव अपने मुंह और नाक से सांस लेते हैं, और फेफड़े के ज़रिए पूरे शरीर में ऑक्सीजन भेजते हैं। यह तो ज्ञात था कि समुद्री कुकंबर और कैटफिश जैसे जलीय जीव आंत से सांस लेते हैं। स्तनधारी जीव आंतों से दवाइयों का अवशोषण तो कर लेते हैं लेकिन यह मालूम नहीं था कि क्या वे श्वसन भी कर सकते हैं।

यही पता लगाने के लिए सिनसिनाटी चिल्ड्रन हॉस्पिटल के गैस्ट्रोएंटरोलॉजिस्ट ताकानोरी ताकबे और उनके साथियों ने चूहों और सूअरों पर कई परीक्षण किए। पहले 11 चूहे लिए। इनमें से चार चूहों की आंतों के अस्तर को रगड़ कर पतला किया ताकि ऑक्सीजन अच्छी तरह अवशोषित हो सके, और फिर इन चूहों के मलाशय से शुद्ध, दाबयुक्त ऑक्सीजन प्रवेश कराई। शेष 7 चूहों की आंत के अस्तर को पतला नहीं किया गया था। उनमें से 4 की आंत में ऑक्सीजन प्रवेश कराई। और शेष तीन चूहों की न तो आंतों की सफाई की और न उन्हें ऑक्सीजन दी। इसके बाद सभी चूहों के शरीर में ऑक्सीजन की कमी पैदा कर दी (वे ‘हाइपॉक्सिक’ हो गए)।

मेड पत्रिका में प्रकाशित नतीजों के अनुसार जिन चूहों की आंत की सफाई नहीं की गई थी और ऑक्सीजन भी नहीं दी गई थी वे औसतन 11 मिनट जीए। जिन्हें आंत साफ किए बिना गुदा के माध्यम से ऑक्सीजन दी गई थी वे 18 मिनट तक जीए। और जिन्हें आंत साफ कर ऑक्सीजन दी गई थी वे चूहे लगभग एक घंटा जीवित रहे।

लेकिन शोधकर्ता आंत साफ करने की मुश्किल और जोखिमपूर्ण प्रक्रिया हटाना चाहते थे। इसलिए अगले अध्ययन में उन्होंने दाबयुक्त ऑक्सीजन की जगह परफ्लोरोकार्बन का उपयोग किया, जो ऑक्सीजन अधिक मात्रा में संग्रह करता है और अक्सर सर्जरी के दौरान रक्त के विकल्प के रूप में इसका उपयोग किया जाता है। उन्होंने तीन हाइपॉक्सिक चूहों और सात हाइपॉक्सिक सूअरों की आंत में ऑक्सीजन युक्त परफ्लोरोकार्बन प्रवेश कराया। नियंत्रण समूह के दो हाइपॉक्सिक चूहों और पांच हाइपॉक्सिक सूअरों की आंत में सलाइन प्रवेश कराई।

नियंत्रण समूह के चूहों और सूअरों में ऑक्सीजन का स्तर घट गया। लेकिन जिन चूहों में ऑक्सीजन प्रवेश कराई गई थी उनमें ऑक्सीजन का स्तर सामान्य रहा व सूअरों में ऑक्सीजन में लगभग 15 प्रतिशत की वृद्धि देखी गई जिससे वे हाइपॉक्सिया के लक्षणों से उबर पाए। कुछ ही देर में उनकी त्वचा की रंगत और गर्माहट भी लौट आई थी।

दोनों अध्ययन के आधार पर शोधकर्ताओं का कहना है कि स्तनधारी अपनी आंतों के माध्यम से ऑक्सीजन को अवशोषित कर सकते हैं, और ऑक्सीजन देने का यह नया तरीका सुरक्षित है। हालांकि मनुष्यों में इसके प्रभावों और सुरक्षा को देखा जाना अभी बाकी है लेकिन उम्मीद है कि यह तरीका ऑक्सीजन की कमी से जूझ रहे लोगों को बचाने में कारगर साबित हो सकता है। अन्य विशेषज्ञों का कहना है कि पारंपरिक श्वसन उपचारों से इसकी तुलना करके देखना चाहिए। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://www.sciencemag.org/sites/default/files/styles/article_main_image_-1280w__no_aspect/public/villi_1280p.jpg?itok=KIpIDocT

एक महिला की कोशिकाओं पर बरसों से शोध – ऋषि राज राय

जकल ज़्यादातर दवाइयां-टीके बनाने, एचआईवी के परीक्षण, कोशिकाओं में संपन्न क्रियाओं व उनसे जुड़े सिद्धांत एवं कई अन्य बीमारियों को समझने के लिए वैज्ञानिक प्रयोगशाला में मानव कोशिकाओं का संवर्धन करते हैं। वैज्ञानिकों को कैंसर जैसी जटिल बीमारी को समझने तथा शोध करने के लिए ऐसी कोशिकाओं की ज़रूरत पड़ती है, जो लगातार समरूपता के साथ विभाजित होती रहें ताकि कृत्रिम परिस्थिति में उन कोशिकाओं की मदद से बीमारियों की उत्पत्ति, बीमारियों की क्रियाविधि और इलाज के विभिन्न तरीके खोजे जा सकें।

वैज्ञानिकों को समरूपी कोशिकाओं की ज़रूरत इसलिए भी पड़ती है क्योंकि उन्हें एक तरह के प्रयोग बार-बार दोहराने पड़ते हैं और अपने नतीजों की तुलना दूसरे वैज्ञानिकों के अवलोकनों के साथ करनी पड़ती है। परंतु 1951 तक वैज्ञानिकों के पास ऐसा कोई कोशिका-वंश नहीं था जो वर्षों तक पीढ़ी-दर-पीढ़ी एक जैसी समरूप कोशिकाओं को जन्म दे सके। जो कोशिका-वंश उपलब्ध भी थे या जिन्हें बनाने की कोशिश की गई थी उनकी कोशिकाएं ज़्यादा से ज़्यादा एक-दो दिन में मर जाती थीं और उनका अध्ययन करना मुश्किल होता था।

हेनरीटा लैक्स

फिर संयुक्त राज्य अमरीका के जॉन हॉपकिन्स विश्वविद्यालय के वैज्ञानिक जॉर्ज गे की प्रयोगशाला में अजीबो-गरीब दिखने वाले ट्यूमर का एक नमूना आया। यह ट्यूमर कुछ हल्के बैंगनी रंग का, जेली जैसा चमकदार था। यह नमूना इसलिए भी कुछ खास था क्योंकि इसकी कुछ कोशिकाएं लगातार विभाजित होते हुए समरूपी कोशिकाओं को जन्म दे रहीं थीं। उन्होंने देखा कि जब कोई पुरानी कोशिका मरती है तो उसके जैसी ही कोशिका की प्रतियां उसकी जगह ले लेती हैं। इससे हुआ यह कि उसी कोशिका की संतानें आज तक मौजूद हैं और उनकी मदद से कई शोध कार्य भी हो रहे हैं।

डॉ. गे की एक प्रयोगशाला सहायक ने इस अमर कोशिका का नाम ‘हेला’ (HeLa) रखा। हेला नाम हेनरीटा लैक्स नामक कैंसर पीड़ित महिला के नाम पर रखा गया था जिनके ट्यूमर से डॉ. गे ने इस कोशिका-वंश की खोज की थी। हेनरीटा लैक्स का जन्म संयुक्त राज्य के वर्जीनिया में हुआ था और वे तम्बाकू के खेत में काम किया करती थीं। हुआ यह कि लैक्स जिस चिकित्सक के यहां इलाज करवा रही थीं, वे डॉ. गे की प्रयोगशाला के लिए कैंसर के ऊतकों के नमूने इकट्ठा कर रहे थे। बरसों से डॉ. गे और उनकी नर्स पत्नी मार्गरेट मानव कोशिकाओं को कृत्रिम रूप से प्रयोगशाला में पनपाने की कोशिश कर रहे थे। लेकिन बाकी वैज्ञानिकों की तरह इनके द्वारा संवर्धित कोशिकाएं कुछ पीढ़ियों तक विभाजित होने के बाद मर जाती थीं। लैक्स की मौत गर्भाशय ग्रीवा के कैंसर से हुई थी और उनकी मौत के कुछ ही महीनों बाद डॉ. गे की प्रयोगशाला में उनके शरीर के ट्यूमर कोशिकाओं की मदद से इस अमर कोशिका-वंश को खोजा गया।

अब सवाल यह उठता है कि हेनरीटा लैक्स की ट्यूमर कोशिकाओं में ऐसा क्या खास है जिससे वे मरती नहीं हैं और विभाजित होते हुए लगातार समरूपी कोशिकाओं को जन्म देती रहती हैं? सच कहें तो इसका उत्तर आज भी पूरी तरह पता नहीं है।

होता यह है कि सामान्य कोशिकाएं औसतन पचास बार विभाजन करने के बाद एपोप्टोसिस नामक प्रक्रिया से खुद-ब-खुद खत्म हो जाती हैं। इसी कारण ज़्यादातर कोशिका-वंश भी एक समय के बाद खत्म हो जाते हैं। लेकिन हेला कोशिकाओं के साथ ऐसा नहीं होता, क्योंकि हेला कोशिकाओं में टेलोमरेज़ नामक एंज़ाइम अत्यधिक सक्रिय होता है। इससे कोशिकाएं एपोप्टोसिस की प्रक्रिया से न गुज़रकर लगातार विभाजित होती रहती हैं।

विभाजन से हाल ही में बनी हेला कोशिकाओं का इलेक्ट्रॉन सूक्ष्मदर्शी से प्राप्त चित्र

डॉ. गे ने अमर कोशिका-वंश ‘हेला’ के कई नमूने दुनिया भर की प्रयोगशालाओं और वैज्ञानिकों के पास भेजे। जल्दी ही दुनिया में असंख्य हेला कोशिकाएं हर हफ्ते बनने और इस्तेमाल होने लगीं।

1950 के दशक में पोलियो की महामारी बुरी तरह फैली हुई थी। जोनास साल्क ने इन्हीं हेला कोशिकाओं का इस्तेमाल कर पोलियो के टीके का परीक्षण किया था। हेला कोशिकाओं को कई तरह की बीमारियों, जैसे चेचक, एचआईवी और इबोला को समझने और उन पर परीक्षण करने के लिए इस्तेमाल में लिया गया है।

ऐसा माना जाता है कि वाल्टर फ्लेमिंग ने 1882 में गुणसूत्रों की खोज की, पर लगभग 70 वर्ष बाद इन्हीं हेला कोशिकाओं की मदद से तीज़ो और लेवान ने उन रासायनिक रंजकों को खोजा जिनसे रंजित होकर गुणसूत्र दिखने लगते हैं और फिर उन्होंने मानव कोशिकाओं में गुणसूत्रों की सही संख्या की गिनती की। हेला कोशिकाएं पहली कोशिकाएं थीं जिन्हें क्लोन किया गया। इन कोशिकाओं को अंतरिक्ष में भी ले जाया गया है। टेलोमरेज़ जैसे एंज़ाइम जिसके कारण कैंसर कोशिकाएं एपोप्टोसिस से बचकर लगातार विभाजित होती रहती हैं, उसकी खोज भी हेला कोशिकाओं की मदद से ही की गई।

एक और गजब की बात है कि जिस गर्भाशय ग्रीवा के कैंसर से हेनरीटा लैक्स की मौत हुई थी, उसके कारक ह्यूमन पैपिलोमा वायरस का भी पता हेला कोशिकाओं की मदद से चला था और आज तो इस वायरस से बचने के लिए टीका भी उपलब्ध है।

हेला कोशिकाओं के कारण असंख्य नई खोजें हुई हैं। वैज्ञानिकों ने हेनरीटा लैक्स की कोशिकाओं की मदद से कई शोध किए, इलाज ढूंढे, आविष्कार किए। लेकिन सोचने वाली बात यह है कि इसकी जानकारी उनके परिवार को नहीं थी। दशकों बाद ही उनके परिवार को पता चला कि लैक्स की कोशिकाओं ने मानव इतिहास पर इतना बड़ा असर डाला है। यह उपेक्षा हेला कोशिकाओं के साथ काम करने वाले वैज्ञानिकों के ऊपर नैतिक प्रश्न भी उठाती है।

खैर कुछ भी हो, हेनरीटा लैक्स की कोशिकाओं के कारण करोड़ों लोगों के जीवन पर बड़ा ही सकारात्मक प्रभाव पड़ा, कई जानें बचीं और आगे भी बचती रहेंगी और इसके लिए पूरी मानवता हेनरीटा लैक्स और डॉ. जॉर्ज गे की कृतज्ञ रहेगी। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://upload.wikimedia.org/wikipedia/en/d/d7/Henrietta_Lacks_%281920-1951%29.jpg
https://thumbs-prod.si-cdn.com/HJgUh464TPRfMCblj7o01J3BQao=/fit-in/1072×0/https://public-media.si-cdn.com/filer/HeLa-cells-dividing-1.jpg

अंतरिक्ष स्टेशन पर मिले उपयोगी बैक्टीरिया

पिछले 20 वर्षों से अंतरिक्ष यात्रियों का घर – अंतर्राष्ट्रीय स्पेस स्टेशन (आईएसएस) – कुछ अनोखे बैक्टीरिया का मेज़बान भी बन गया है। स्पेस स्टेशन पर पाए गए चार बैक्टीरिया स्ट्रेन में से तीन के बारे में पूर्व में कोई जानकारी नहीं थी। फ्रंटियर्स इन माइक्रोबायोलॉजी जर्नल में प्रकाशित अध्ययन के अनुसार इन बैक्टीरिया स्ट्रेन्स का उपयोग भविष्य में लंबी अंतरिक्ष उड़ानों के दौरान पौधे उगाने के लिए किया जा सकता है।

गौरतलब है कि कई वर्षों से पृथ्वी से पूरी तरह से अलग होने से स्पेस स्टेशन एक अनूठा पर्यावरण है। ऐसे में यह जानने के लिए तरह-तरह के प्रयोग किए गए हैं कि यहां कौन-से बैक्टीरिया मौजूद हैं। पिछले 6 वर्षों में स्पेस स्टेशन के 8 विशिष्ट स्थानों पर निरंतर सूक्ष्मजीवों और बैक्टीरिया की वृद्धि की जांच की जा रही है। इन स्थानों में वह स्थान भी शामिल है जहां सैकड़ों वैज्ञानिक प्रयोग किए जाते हैं, पौधों की खेती का प्रकोष्ठ भी शामिल है और वह जगह भी जहां क्रू-सदस्य भोजन और अन्य अवसरों पर साथ आते हैं। इस तरह सैकड़ों नमूने पृथ्वी पर विश्लेषण के लिए आए हैं और कई हज़ार अभी कतार में हैं।

पृथक किए गए बैक्टीरिया के चारों स्ट्रेन मिथाइलोबैक्टीरिएसी कुल से हैं। मिथाइलोबैक्टीरियम प्रजातियां विशेष रूप से पौधों की वृद्धि में और रोगजनकों से लड़ने में सहायक होती हैं। हालांकि इन चार में से एक (मिथाइलोरुब्रम रोडेशिएनम) पहले से ज्ञात था जबकि छड़ आकार के तीन अन्य बैक्टीरिया अज्ञात थे। इनके आनुवंशिक विश्लेषण में वैज्ञानिकों ने पाया कि ये बैक्टीरिया प्रजातियां मिथाइलोबैक्टीरियम इंडीकम के निकट सम्बंधी हैं। अब इनमें से एक बैक्टीरिया का नाम भारतीय जैव-विविधता वैज्ञानिक मुहम्मद अजमल खान के सम्मान में मिथाइलोबैक्टीरियम अजमाली रखा गया है।

इस बैक्टीरिया के संभावित अनुप्रयोगों को समझने के लिए नासा जेट प्रपल्शन लेबोरेटरी के वैज्ञानिक कस्तूरी वेंकटेश्वरन और नितीश कुमार ने इस शोध पर काम किया है। वैज्ञानिकों का ऐसा मानना है कि यह नया स्ट्रेन पौधों की वृद्धि में उपयोगी हो सकता है। न्यूनतम संसाधनों वाले क्षेत्रों में यह जीवाणु मुश्किल परिस्थितियों में भी पौधे के बढ़ने में सहायक होगा। पत्तेदार सब्ज़ियों और मूली को तो सफलतापूर्वक अंतरिक्ष स्टेशन पर उगाया गया है लेकिन फसलों को उगाने में थोड़ी कठिनाई होती है। ऐसे में मिथाइलोबैक्टीरियम इस संदर्भ में उपयोगी हो सकता है।

अभी इस बैक्टीरिया के सही उपयोग को समझने के लिए समय और कई प्रयोगों की ज़रूरत है। आईएसएस पर मिले ये तीन स्ट्रेन अलग-अलग समय पर और अलग-अलग स्थानों से लिए गए थे इसलिए आईएसएस में इनके टिकाऊपन और पारिस्थितिक महत्व का अध्ययन करना होगा। मंगल पर मानव को भेजा जाए, उससे पहले इस तरह के अध्ययन महत्वपूर्ण और ज़रूरी हैं। (स्रोत फीचर्स)

नोट: स्रोत में छपे लेखों के विचार लेखकों के हैं। एकलव्य का इनसे सहमत होना आवश्यक नहीं है।
Photo Credit : https://i.pinimg.com/originals/f4/9f/28/f49f28e49021e82ac52857d828eaef58.jpg